Entanglement transitions induced by quantum-data collection (2310.03061v4)
Abstract: We present an entanglement transition in an array of qubits, induced by the transfer of quantum information from a system to a quantum computer. This quantum-data collection is an essential protocol in quantum machine learning algorithms that promise exponential advantage over their classical counterparts. In this and an accompanying work [Phys. Rev. A 111, 012425 (2025)], we identify sufficient conditions for an entanglement transition to occur in the late time state of the system and quantum computer. In this letter, we present an example entanglement transition occurring in a system comprised of a 1D chain of qubits evolving under a random brickwork circuit. After each layer, a fraction $p$ of sites undergo noisy quantum transduction in which quantum information is transferred to a quantum computer but at the cost of introducing noise from an environment. For an entanglement transition to occur, we argue that the environment must obtain the same amount of information as gained by the computer. Under this condition, the circuit shows a transition from volume law to area law entanglement as the rate $p$ is increased above a critical threshold. Our work delineates the prerequisites for quantum-data collection to induce entanglement transitions, thereby establishing a foundational framework for emergent entanglement phenomena in protocols relevant to quantum machine learning.
- D. J. C. MacKay, Information Theory, Inference & Learning Algorithms (Cambridge University Press, USA, 2002).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, Journal of Physics A: Mathematical and Theoretical 47, 424006 (2014).
- W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299, 802 (1982).
- D. Dieks, Communication by EPR devices, Physics Letters A 92, 271 (1982).
- B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
- Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98 (2018).
- X. Turkeshi, R. Fazio, and M. Dalmonte, Measurement-induced criticality in (2+1)21(2+1)( 2 + 1 )-dimensional hybrid quantum circuits, Phys. Rev. B 102, 014315 (2020).
- A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-induced topological entanglement transitions in symmetric random quantum circuits, Nature Physics 17, 342 (2021a).
- S. Sang and T. H. Hsieh, Measurement-protected quantum phases, Phys. Rev. Research 3, 023200 (2021).
- A. Lavasani, Y. Alavirad, and M. Barkeshli, Topological order and criticality in (2+1)D21D(2+1)\mathrm{D}( 2 + 1 ) roman_D monitored random quantum circuits, Phys. Rev. Lett. 127, 235701 (2021b).
- O. Lunt, M. Szyniszewski, and A. Pal, Measurement-induced criticality and entanglement clusters: A study of one-dimensional and two-dimensional clifford circuits, Phys. Rev. B 104, 155111 (2021).
- Y. Bao, S. Choi, and E. Altman, Symmetry enriched phases of quantum circuits, Annals of Physics 435, 168618 (2021).
- Z. Weinstein, Y. Bao, and E. Altman, Measurement-induced power-law negativity in an open monitored quantum circuit, Phys. Rev. Lett. 129, 080501 (2022).
- O. Alberton, M. Buchhold, and S. Diehl, Entanglement transition in a monitored free-fermion chain: From extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021).
- T. Müller, S. Diehl, and M. Buchhold, Measurement-induced dark state phase transitions in long-ranged fermion systems, Phys. Rev. Lett. 128, 010605 (2022).
- Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020).
- G. Piccitto, A. Russomanno, and D. Rossini, Entanglement transitions in the quantum ising chain: A comparison between different unravelings of the same lindbladian, Phys. Rev. B 105, 064305 (2022).
- S. Murciano, P. Calabrese, and L. Piroli, Symmetry-resolved page curves, Phys. Rev. D 106, 046015 (2022).
- P. Sierant and X. Turkeshi, Controlling entanglement at absorbing state phase transitions in random circuits, Phys. Rev. Lett. 130, 120402 (2023).
- K. Yamamoto and R. Hamazaki, Localization properties in disordered quantum many-body dynamics under continuous measurement, Phys. Rev. B 107, L220201 (2023).
- A. A. Akhtar, H.-Y. Hu, and Y.-Z. You, Measurement-induced criticality is tomographically optimal (2023), arXiv:2308.01653 [quant-ph] .
- I. Poboiko, I. V. Gornyi, and A. D. Mirlin, Measurement-induced phase transition for free fermions above one dimension (2023a), arXiv:2309.12405 [quant-ph] .
- H.-Y. Huang, R. Kueng, and J. Preskill, Information-theoretic bounds on quantum advantage in machine learning, Phys. Rev. Lett. 126, 190505 (2021).
- D. Aharonov, J. Cotler, and X.-L. Qi, Quantum algorithmic measurement, Nature communications 13, 887 (2022).
- M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10, 041020 (2020a).
- Y. Li and M. P. A. Fisher, Statistical mechanics of quantum error correcting codes, Phys. Rev. B 103, 104306 (2021).
- M. J. Gullans and D. A. Huse, Scalable probes of measurement-induced criticality, Phys. Rev. Lett. 125, 070606 (2020b).
- M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
- N. J. Cerf and C. Adami, Negative entropy and information in quantum mechanics, Phys. Rev. Lett. 79, 5194 (1997).
- N. J. Cerf and C. Adami, Quantum extension of conditional probability, Phys. Rev. A 60, 893 (1999).
- D. Gottesman, Stabilizer Codes and Quantum Error Correction, arXiv:quant-ph/9705052 (1997).
- D. Gottesman, The Heisenberg Representation of Quantum Computers, arXiv:quant-ph/9807006 (1998).
- S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70, 052328 (2004).
- S. P. Kelly and J. Marino, Generalizing measurement-induced phase transitions to information exchange symmetry breaking (2024), arXiv:2402.***** [quant-ph] .
- M. Horodecki, J. Oppenheim, and A. Winter, Partial quantum information, Nature 436, 673 (2005).
- M. Horodecki, J. Oppenheim, and A. Winter, Quantum State Merging and Negative Information, Commun. Math. Phys. 269, 107 (2007).
- See supplementary online material for details.