Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-Aided Warmstart of Model Predictive Control in Uncertain Fast-Changing Traffic (2310.02918v1)

Published 4 Oct 2023 in eess.SY, cs.AI, and cs.SY

Abstract: Model Predictive Control lacks the ability to escape local minima in nonconvex problems. Furthermore, in fast-changing, uncertain environments, the conventional warmstart, using the optimal trajectory from the last timestep, often falls short of providing an adequately close initial guess for the current optimal trajectory. This can potentially result in convergence failures and safety issues. Therefore, this paper proposes a framework for learning-aided warmstarts of Model Predictive Control algorithms. Our method leverages a neural network based multimodal predictor to generate multiple trajectory proposals for the autonomous vehicle, which are further refined by a sampling-based technique. This combined approach enables us to identify multiple distinct local minima and provide an improved initial guess. We validate our approach with Monte Carlo simulations of traffic scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. F. Micheli, M. Bersani, S. Arrigoni, F. Braghin, and F. Cheli, “NMPC trajectory planner for urban autonomous driving,” Vehicle system dynamics, vol. 61, no. 5, pp. 1387–1409, 2023.
  2. F. Siebenrock, M. Günther, and S. Hohmann, “LTV-MPC Based Trajectory Planning Considering Uncertain Object Prediction Through Adaptive Potential Fields,” in 2020 IEEE Conference on Control Technology and Applications (CCTA).   IEEE, 2020, pp. 666–672.
  3. Q. Shi, J. Zhao, A. El Kamel, and I. Lopez-Juarez, “MPC Based Vehicular Trajectory Planning in Structured Environment,” IEEE Access, vol. 9, pp. 21 998–22 013, 2021.
  4. A. Liniger, A. Domahidi, and M. Morari, “Optimization-Based Autonomous Racing of 1:43 Scale RC Cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647, 2015.
  5. B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4459–4466, 2019.
  6. L. Lyons and L. Ferranti, “Curvature-Aware Model Predictive Contouring Control,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 3204–3210.
  7. S. Aradi, “Survey of deep reinforcement learning for motion planning of autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 740–759, 2022.
  8. A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” 2018.
  9. S. Gros and M. Zanon, “Data-driven Economic NMPC using Reinforcement Learning,” IEEE Transactions on Automatic Control, vol. 65, no. 2, pp. 636–648, 2019.
  10. B. Zarrouki, V. Klös, N. Heppner, S. Schwan, R. Ritschel, and R. Voßwinkel, “Weights-varying MPC for Autonomous Vehicle Guidance: a Deep Reinforcement Learning Approach,” in 2021 European Control Conference (ECC), Jun. 2021, pp. 119–125.
  11. B. Brito, M. Everett, J. P. How, and J. Alonso-Mora, “Where to go Next: Learning a Subgoal Recommendation Policy for Navigation in Dynamic Environments,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4616–4623, 2021.
  12. A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel, “Learning from the Hindsight Plan – Episodic MPC Improvement,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 336–343.
  13. T. Koller, F. Berkenkamp, M. Turchetta, J. Bödecker, and A. Krause, “Learning-based model predictive control for safe reinforcement learning,” in Robust autonomy: tools for safety in real-world uncertain environments, 2019.
  14. J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-Driven Model Predictive Control With Stability and Robustness Guarantees,” IEEE Transactions on Automatic Control, vol. 66, no. 4, pp. 1702–1717, 2020.
  15. L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-Based Model Predictive Control: Toward Safe Learning in Control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 269–296, 2020.
  16. B. Brito, A. Agarwal, and J. Alonso-Mora, “Learning Interaction-aware Guidance Policies for Motion Planning in Dense Traffic Scenarios,” arXiv preprint arXiv:2107.04538, 2021.
  17. Y. Song and D. Scaramuzza, “Policy Search for Model Predictive Control with Application to Agile Drone Flight,” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2114–2130, 2022.
  18. K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for learning-based control of constrained nonlinear dynamical systems,” Automatica, vol. 129, p. 109597, 2021.
  19. B. Tearle, K. P. Wabersich, A. Carron, and M. N. Zeilinger, “A predictive safety filter for learning-based racing control,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7635–7642, 2021.
  20. N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse, “Using a Memory of Motion to Efficiently Warm-Start a Nonlinear Predictive Controller,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 2986–2993.
  21. T. Barbié, R. Kabutan, R. Tanaka, and T. Nishida, “Gaussian mixture spline trajectory: learning from a dataset, generating trajectories without one,” Advanced Robotics, vol. 32, no. 10, pp. 547–558, 2018.
  22. S. Natarajan, “Learning initial trajectory using sequence-to-sequence approach to warm start an optimization-based motion planner,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 9430–9436.
  23. T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of Motion for Warm-starting Trajectory Optimization,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2594–2601, 2020.
  24. M. Svenstrup, T. Bak, and H. J. Andersen, “Trajectory planning for robots in dynamic human environments,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2010, pp. 4293–4298.
  25. J. Li, M. Ran, H. Wang, and L. Xie, “MPC-based Unified Trajectory Planning and Tracking Control Approach for Automated Guided Vehicles,” in 2019 IEEE 15th International Conference on Control and Automation (ICCA).   IEEE, 2019, pp. 374–380.
  26. O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Globally Guided Trajectory Planning in Dynamic Environments,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 10 118–10 124.
  27. C. Rösmann, F. Hoffmann, and T. Bertram, “Planning of multiple robot trajectories in distinctive topologies,” in 2015 European Conference on Mobile Robots (ECMR).   IEEE, 2015, pp. 1–6.
  28. B. Yi, P. Bender, F. Bonarens, and C. Stiller, “Model Predictive Trajectory Planning for Automated Driving,” IEEE Transactions on Intelligent Vehicles, vol. 4, no. 1, pp. 24–38, 2018.
  29. P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “Guaranteeing Consistency in a Motion Planning and Control Architecture Using a Kinematic Bicycle Model,” in 2018 Annual American Control Conference (ACC).   IEEE, 2018, pp. 3981–3987.
  30. S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion transformer with global intention localization and local movement refinement,” Advances in Neural Information Processing Systems, vol. 35, pp. 6531–6543, 2022.
  31. N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp, “Wayformer: Motion Forecasting via Simple & Efficient Attention Networks,” arXiv preprint arXiv:2207.05844, 2022.
  32. S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. R. Qi, Y. Zhou et al., “Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9710–9719.
  33. P. Bender, Ö. Ş. Taş, J. Ziegler, and C. Stiller, “The combinatorial aspect of motion planning: Maneuver variants in structured environments,” in 2015 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2015, pp. 1386–1392.
  34. M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for dynamic street scenarios in a frenét frame,” in 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 987–993.
  35. Y. Yao, D. Goehring, and J. Reichardt, “An empirical bayes analysis of vehicle trajectory models,” arXiv preprint arXiv:2211.01696, 2022.
  36. J. Reichardt, “Trajectories as markov-states for long term traffic scene prediction,” in 14-th UniDAS FAS-Workshop, Berkheim, Germany, 2022, p. 14.
  37. M. D. Houghton, A. B. Oshin, M. J. Acheson, E. A. Theodorou, and I. M. Gregory, “Path planning: Differential dynamic programming and model predictive path integral control on vtol aircraft,” in AIAA SCITECH 2022 Forum, 2022, p. 0624.
  38. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.
Citations (3)

Summary

We haven't generated a summary for this paper yet.