Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous 3D Myocardial Motion Tracking via Echocardiography (2310.02792v2)

Published 4 Oct 2023 in eess.IV and cs.CV

Abstract: Myocardial motion tracking stands as an essential clinical tool in the prevention and detection of cardiovascular diseases (CVDs), the foremost cause of death globally. However, current techniques suffer from incomplete and inaccurate motion estimation of the myocardium in both spatial and temporal dimensions, hindering the early identification of myocardial dysfunction. To address these challenges, this paper introduces the Neural Cardiac Motion Field (NeuralCMF). NeuralCMF leverages implicit neural representation (INR) to model the 3D structure and the comprehensive 6D forward/backward motion of the heart. This method surpasses pixel-wise limitations by offering the capability to continuously query the precise shape and motion of the myocardium at any specific point throughout the cardiac cycle, enhancing the detailed analysis of cardiac dynamics beyond traditional speckle tracking. Notably, NeuralCMF operates without the need for paired datasets, and its optimization is self-supervised through the physics knowledge priors in both space and time dimensions, ensuring compatibility with both 2D and 3D echocardiogram video inputs. Experimental validations across three representative datasets support the robustness and innovative nature of the NeuralCMF, marking significant advantages over existing state-of-the-art methods in cardiac imaging and motion tracking.

Citations (1)

Summary

We haven't generated a summary for this paper yet.