Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

R-LGP: A Reachability-guided Logic-geometric Programming Framework for Optimal Task and Motion Planning on Mobile Manipulators (2310.02791v2)

Published 4 Oct 2023 in cs.RO

Abstract: This paper presents an optimization-based solution to task and motion planning (TAMP) on mobile manipulators. Logic-geometric programming (LGP) has shown promising capabilities for optimally dealing with hybrid TAMP problems that involve abstract and geometric constraints. However, LGP does not scale well to high-dimensional systems (e.g. mobile manipulators) and can suffer from obstacle avoidance issues due to local minima. In this work, we extend LGP with a sampling-based reachability graph to enable solving optimal TAMP on high-DoF mobile manipulators. The proposed reachability graph can incorporate environmental information (obstacles) to provide the planner with sufficient geometric constraints. This reachability-aware heuristic efficiently prunes infeasible sequences of actions in the continuous domain, hence, it reduces replanning by securing feasibility at the final full path trajectory optimization. Our framework proves to be time-efficient in computing optimal and collision-free solutions, while outperforming the current state of the art on metrics of success rate, planning time, path length and number of steps. We validate our framework on the physical Toyota HSR robot and report comparisons on a series of mobile manipulation tasks of increasing difficulty. Videos of the experiments are available at https://youtu.be/NEVVHEhQnOQ.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. M. Toussaint, “Logic-geometric programming: An optimization-based approach to combined task and motion planning,” in Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
  2. C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream: Integrating symbolic planners and blackbox samplers via optimistic adaptive planning,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 30, 2020, pp. 440–448.
  3. R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of theorem proving to problem solving,” Artificial intelligence, vol. 2, no. 3-4, pp. 189–208, 1971.
  4. N. J. Nilsson, “Shakey the robot,” Technical note 323, 1984.
  5. C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez, “Integrated task and motion planning,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, no. 1, pp. 265–293, 2021.
  6. S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel, “Combined task and motion planning through an extensible planner-independent interface layer,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 639–646.
  7. N. Dantam, S. Chaudhuri, and L. Kavraki, “The task motion kit,” IEEE Robotics & Automation Magazine, vol. PP, pp. 1–1, 05 2018.
  8. N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “Incremental task and motion planning: A constraint-based approach.” in Robotics: Science and systems, vol. 12, 2016, p. 00052.
  9. N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. Kavraki, “An incremental constraint-based framework for task and motion planning,” The International Journal of Robotics Research, vol. 37, no. 10, pp. 1134–1151, 2018.
  10. T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation planning with probabilistic roadmaps,” The International Journal of Robotics Research, vol. 23, no. 7-8, pp. 729–746, 2004.
  11. K. Kim, D. Park, and M. J. Kim, “A reachability tree-based algorithm for robot task and motion planning,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 3750–3756.
  12. D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and D. Wilkins, “Pddl-the planning domain definition language,” 1998.
  13. K. T. Ly, M. Munks, W. Merkt, and I. Havoutis, “Asymptotically optimized multi-surface coverage path planning for loco-manipulation in inspection and monitoring,” in IEEE 19th International Conference on Automation Science and Engineering (CASE).   IEEE, 2023.
  14. H. X. Li and B. C. Williams, “Generative planning for hybrid systems based on flow tubes,” in ICAPS, 2008, pp. 206–213.
  15. C. V. Braun, J. Ortiz-Haro, M. Toussaint, and O. S. Oguz, “Rhh-lgp: Receding horizon and heuristics-based logic-geometric programming for task and motion planning,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 13 761–13 768.
  16. D. Driess, O. Oguz, and M. Toussaint, “Hierarchical task and motion planning using logic-geometric programming (hlgp),” in RSS Workshop on Robust Task and Motion Planning, 2019.
  17. A. T. Le, P. Kratzer, S. Hagenmayer, M. Toussaint, and J. Mainprice, “Hierarchical human-motion prediction and logic-geometric programming for minimal interference human-robot tasks,” in 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN).   IEEE, 2021, pp. 7–14.
  18. M. Toussaint and M. Lopes, “Multi-bound tree search for logic-geometric programming in cooperative manipulation domains,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 4044–4051.
  19. J. K. Behrens, R. Lange, and M. Mansouri, “A constraint programming approach to simultaneous task allocation and motion scheduling for industrial dual-arm manipulation tasks,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8705–8711.
  20. K. E. Booth, T. T. Tran, G. Nejat, and J. C. Beck, “Mixed-integer and constraint programming techniques for mobile robot task planning,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 500–507, 2016.
  21. D. Ioan, I. Prodan, S. Olaru, F. Stoican, and S.-I. Niculescu, “Mixed-integer programming in motion planning,” Annual Reviews in Control, vol. 51, pp. 65–87, 2021.
  22. R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer convex optimization,” in 2014 IEEE-RAS international conference on humanoid robots.   IEEE, 2014, pp. 279–286.
  23. P. Culbertson, S. Bandyopadhyay, and M. Schwager, “Multi-robot assembly sequencing via discrete optimization,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 6502–6509.
  24. M. Lippi and A. Marino, “A mixed-integer linear programming formulation for human multi-robot task allocation,” in 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN).   IEEE, 2021, pp. 1017–1023.
  25. W. Thomason, M. P. Strub, and J. D. Gammell, “Task and motion informed trees (tmit*): Almost-surely asymptotically optimal integrated task and motion planning,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 370–11 377, 2022.
  26. J.-P. Sleiman, F. Farshidian, and M. Hutter, “Versatile multicontact planning and control for legged loco-manipulation,” Science Robotics, vol. 8, no. 81, 2023.
  27. R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (Cat. No. 00CH37065), vol. 1.   IEEE, 2000, pp. 521–528.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com