Counterdiabatic Driving for Periodically Driven Systems (2310.02728v4)
Abstract: Periodically driven systems have emerged as a useful technique to engineer the properties of quantum systems, and are in the process of being developed into a standard toolbox for quantum simulation. An outstanding challenge that leaves this toolbox incomplete is the manipulation of the states dressed by strong periodic drives. The state-of-the-art in Floquet control is the adiabatic change of parameters. Yet, this requires long protocols conflicting with the limited coherence times in experiments. To achieve fast control of nonequilibrium quantum matter, we generalize the notion of variational counterdiabatic driving away from equilibrium focusing on Floquet systems. We derive a nonperturbative variational principle to find local approximations to the adiabatic gauge potential for the effective Floquet Hamiltonian. It enables transitionless driving of Floquet eigenstates far away from the adiabatic regime. We discuss applications to two-level, Floquet band, and interacting periodically driven models. The developed technique allows us to capture nonperturbative photon resonances and obtain high-fidelity protocols that respect experimental limitations like the locality of the accessible control terms.
- G. Floquet, Annales scientifiques de l'École normale supérieure 12, 47 (1883).
- J. H. Shirley, Phys. Rev. 138, B979 (1965).
- A. Gómez-León and G. Platero, Phys. Rev. Lett. 110, 200403 (2013).
- N. Goldman, J. C. Budich, and P. Zoller, Nature Physics 12, 639 (2016).
- N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys. 91, 015005 (2019).
- M. S. Rudner and N. H. Lindner, Nature Reviews Physics 2, 229 (2020).
- P. Kapitza, Soviet Physivs JETP 21, 588 (1951).
- L. D. Landau and E. M. Lifshitz, Mechanics, Third Edition: Volume 1 (Course of Theoretical Physics), 3rd ed. (Butterworth-Heinemann, 1976).
- D. V. Else, B. Bauer, and C. Nayak, Phys. Rev. Lett. 117, 090402 (2016).
- R. Moessner and S. L. Sondhi, Nature Physics 13, 424 (2017).
- V. Khemani, R. Moessner, and S. L. Sondhi, A brief history of time crystals (2019), arXiv:1910.10745 [cond-mat.str-el] .
- F. Nathan and M. S. Rudner, New Journal of Physics 17, 125014 (2015).
- N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014).
- M. Bukov, L. D’Alessio, and A. Polkovnikov, Advances in Physics 64, 139 (2015), https://doi.org/10.1080/00018732.2015.1055918 .
- A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
- M. Aidelsburger, S. Nascimbene, and N. Goldman, Comptes Rendus Physique 19, 394 (2018), quantum simulation / Simulation quantique.
- T. Oka and S. Kitamura, Annual Review of Condensed Matter Physics 10, 387 (2019).
- C. Weitenberg and J. Simonet, Nature Physics 17, 1342 (2021).
- A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90, 012110 (2014).
- D. A. Abanin, W. De Roeck, and F. m. c. Huveneers, Phys. Rev. Lett. 115, 256803 (2015).
- T. Mori, T. Kuwahara, and K. Saito, Phys. Rev. Lett. 116, 120401 (2016).
- H. Breuer and M. Holthaus, Physics Letters A 140, 507 (1989).
- A. Eckardt and M. Holthaus, Phys. Rev. Lett. 101, 245302 (2008).
- J. Preskill, Quantum 2, 79 (2018).
- C. Gross and I. Bloch, Science 357, 995 (2017), https://www.science.org/doi/pdf/10.1126/science.aal3837 .
- M. V. Berry, Journal of Physics A: Mathematical and Theoretical 42, 365303 (2009).
- M. Demirplak and S. A. Rice, The Journal of Physical Chemistry A 107, 9937 (2003).
- M. Demirplak and S. A. Rice, The Journal of Physical Chemistry B 109, 6838 (2005).
- M. Demirplak and S. A. Rice, The Journal of Chemical Physics 129, 10.1063/1.2992152 (2008).
- S. Guérin, V. Hakobyan, and H. R. Jauslin, Phys. Rev. A 84, 013423 (2011).
- A. del Campo, M. M. Rams, and W. H. Zurek, Phys. Rev. Lett. 109, 115703 (2012).
- A. del Campo, Phys. Rev. Lett. 111, 100502 (2013).
- A. C. Santos and M. S. Sarandy, Journal of Physics A: Mathematical and Theoretical 51, 025301 (2017).
- See Supplemental Material.
- A. Eckardt and E. Anisimovas, New Journal of Physics 17, 093039 (2015).
- I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
- D. Sels and A. Polkovnikov, Proceedings of the National Academy of Sciences 114, 10.1073/pnas.1619826114 (2017).
- M. B. Hastings and X.-G. Wen, Phys. Rev. B 72, 045141 (2005).
- X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138 (2010b).
- S. Bachmann, W. De Roeck, and M. Fraas, Phys. Rev. Lett. 119, 060201 (2017).
- S. Morawetz and A. Polkovnikov, arXiv preprint arXiv:2401.12287 (2024).
- T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
- A. Das and B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008).
- S. Higashikawa, H. Fujita, and M. Sato, Floquet engineering of classical systems (2018), arXiv:1810.01103 [cond-mat.str-el] .
- P. T. Dumitrescu, R. Vasseur, and A. C. Potter, Phys. Rev. Lett. 120, 070602 (2018).
- P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).
- P. Weinberg and M. Bukov, SciPost Phys. 7, 020 (2019).
- M. Born and V. Fock, Zeitschrift für Physik 51, 165 (1928).
- T. Kato, Journal of the Physical Society of Japan 5, 435 (1950), https://doi.org/10.1143/JPSJ.5.435 .
- V. Novičenko, E. Anisimovas, and G. Juzeliūnas, Phys. Rev. A 95, 023615 (2017).
- E. Fel'dman, Physics Letters A 104, 479 (1984).
- M. Bandyopadhyay and S. Dattagupta, Pramana 70, 381 (2008).
- I. Hubac and S. Wilson, Brillouin-Wigner Methods for Many-Body Systems (Springer Netherlands, 2010).
- K. Takahashi and A. del Campo, arXiv preprint arXiv:2302.05460 (2023).
- L. Landau, Physikalische Zeitschrift der Sowjetunion 2, 46 (1932).
- L. D. Landau, Collected papers of LD Landau (Pergamon, 1965).
- C. Zener, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137, 696 (1932).
- E. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).