Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Insights of using Control Theory for minimizing Induced Seismicity in Underground Reservoirs (2310.02700v3)

Published 4 Oct 2023 in eess.SY, cs.SY, and math.OC

Abstract: Deep Geothermal Energy, Carbon Capture, and Storage and Hydrogen Storage have significant potential to meet the large-scale needs of the energy sector and reduce the CO$_2$ emissions. However, the injection of fluids into the earth's crust, upon which these activities rely, can lead to the formation of new seismogenic faults or the reactivation of existing ones, thereby causing earthquakes. In this study, we propose a novel approach based on control theory to address this issue. First, we obtain a simplified model of induced seismicity due to fluid injections in an underground reservoir using a diffusion equation in three dimensions. Then, we design a robust tracking control approach to force the seismicity rate to follow desired references. In this way, the induced seismicity is minimized while ensuring fluid circulation for the needs of renewable energy production and storage. The designed control guarantees the achievement of the control objectives even in the presence of system uncertainties and unknown dynamics. Finally, we present simulations of a simplified geothermal reservoir under different scenarios of energy demand to show the reliability and performance of the control approach, opening new perspectives for field experiments based on real-time regulators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. doi:10.1785/0220170112.
  2. doi:10.1785/0220150067.
  3. doi:10.1002/2016RG000542.
  4. doi:10.1038/d41586-019-00959-4.
  5. doi:10.1785/gssrl.80.5.784.
  6. doi:10.1088/0034-4885/67/8/R03.
  7. doi:10.1130/G34045.1.
  8. doi:10.1007/s10950-020-09966-9.
  9. doi:10.1093/gji/ggz058.
  10. doi:https://doi.org/10.1029/2020GL090648.
  11. doi:10.1007/s00603-018-1467-4.
  12. doi:10.1785/0220180337.
  13. doi:10.1093/gji/ggac416.
  14. doi:10.1029/2019JB017847.
  15. doi:10.1029/2021JB023410.
  16. doi:10.1109/TCST.2023.3242431.
  17. doi:10.1016/j.sysconle.2023.105571.
  18. doi:arXiv:2207.07181.
  19. doi:10.1109/VSS57184.2022.9902111.
  20. doi:10.1007/s10596-013-9355-1.
  21. doi:10.1007/s10596-008-9100-3.
  22. doi:10.3182/20110828-6-IT-1002.01823.
  23. doi:10.1109/ECC.2016.7810355.
  24. doi:10.1063/1.1712886.
  25. doi:10.1680/geot.1980.30.4.385.
  26. doi:10.1002/2015JB012060.
  27. doi:10.1029/93JB02581.
  28. doi:https://doi.org/10.1002/jgrb.50264.
  29. doi:https://doi.org/10.1016/j.geothermics.2008.06.002. URL https://www.sciencedirect.com/science/article/pii/S0375650508000382
  30. doi:https://doi.org/10.1016/j.ijrmms.2022.105098. URL https://www.sciencedirect.com/science/article/pii/S1365160922000661
  31. doi:https://doi.org/10.1016/j.gete.2019.100151.
  32. doi:10.1002/nag.2330.
  33. doi:10.1029/2019JB019134.
  34. doi:10.1109/VSS57184.2022.9901971.
  35. doi:10.1016/0893-9659(89)90079-7. URL https://linkinghub.elsevier.com/retrieve/pii/0893965989900797
  36. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JB018368, doi:https://doi.org/10.1029/2019JB018368. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JB018368
  37. doi:10.1038/s43247-023-00764-y.
  38. doi:10.1007/978-1-4612-5561-1.
  39. doi:10.1016/j.automatica.2017.04.025.
  40. doi:10.1144/SP528-2022-169.
  41. doi:10.1007/s00498-012-0090-2.
Citations (2)

Summary

We haven't generated a summary for this paper yet.