Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Prototype-Based Neural Network for Image Anomaly Detection and Localization (2310.02576v2)

Published 4 Oct 2023 in cs.CV

Abstract: Image anomaly detection and localization perform not only image-level anomaly classification but also locate pixel-level anomaly regions. Recently, it has received much research attention due to its wide application in various fields. This paper proposes ProtoAD, a prototype-based neural network for image anomaly detection and localization. First, the patch features of normal images are extracted by a deep network pre-trained on nature images. Then, the prototypes of the normal patch features are learned by non-parametric clustering. Finally, we construct an image anomaly localization network (ProtoAD) by appending the feature extraction network with $L2$ feature normalization, a $1\times1$ convolutional layer, a channel max-pooling, and a subtraction operation. We use the prototypes as the kernels of the $1\times1$ convolutional layer; therefore, our neural network does not need a training phase and can conduct anomaly detection and localization in an end-to-end manner. Extensive experiments on two challenging industrial anomaly detection datasets, MVTec AD and BTAD, demonstrate that ProtoAD achieves competitive performance compared to the state-of-the-art methods with a higher inference speed. The source code is available at: https://github.com/98chao/ProtoAD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chao Huang (244 papers)
  2. Zhao Kang (70 papers)
  3. Hong Wu (132 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.