Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp and Robust Estimation of Partially Identified Discrete Response Models (2310.02414v4)

Published 3 Oct 2023 in econ.EM

Abstract: Semiparametric discrete choice models are widely used in a variety of practical applications. While these models are point identified in the presence of continuous covariates, they can become partially identified when covariates are discrete. In this paper we find that classical estimators, including the maximum score estimator, (Manski (1975)), loose their attractive statistical properties without point identification. First of all, they are not sharp with the estimator converging to an outer region of the identified set, (Komarova (2013)), and in many discrete designs it weakly converges to a random set. Second, they are not robust, with their distribution limit discontinuously changing with respect to the parameters of the model. We propose a novel class of estimators based on the concept of a quantile of a random set, which we show to be both sharp and robust. We demonstrate that our approach extends from cross-sectional settings to classical static and dynamic discrete panel data models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. \harvarditem[Abrevaya and Huang]Abrevaya and Huang2005abrevayahuang2005 Abrevaya, J., and J. Huang (2005): “On the Bootstrap of the Maximum Score Estimator,” Econometrica, 73, 1175–1204.
  2. \harvarditem[Ahn, Ichimura, Powell, and Ruud]Ahn, Ichimura, Powell, and Ruud2018ahnetal2018 Ahn, H., H. Ichimura, J. L. Powell, and P. A. Ruud (2018): “Simple Estimators for Invertible Index Models,” Journal of Business and Economic Statistics, 36, 1–10.
  3. \harvarditem[Andersen]Andersen1970anderson70 Andersen, E. (1970): “Asymptotic Properties of Conditional Maximum Likelihood Estimators,” Journal of the Royal Statistical Society, 32(3), 283–301.
  4. \harvarditem[Andrews]Andrews1999andrews-boundary Andrews, D. (1999): “Estimation When a Parameter Is on the Boundary,” Econometrica, 67, 1296–1340.
  5. \harvarditem[Beresteanu, Molchanov, and Molinari]Beresteanu, Molchanov, and Molinari2011beresteanumolchanovmolinari2011 Beresteanu, A., I. Molchanov, and F. Molinari (2011): “Sharp Identification Regions in Models With Convex Moment Predictions,” Econometrica, 79(6), 1785–1821.
  6. \harvarditem[Beresteanu, Molchanov, and Molinari]Beresteanu, Molchanov, and Molinari2012BERESTEANU201217    (2012): “Partial identification using random set theory,” Journal of Econometrics, 166(1), 17–32, Annals Issue on “Identification and Decisions”, in Honor of Chuck Manski’s 60th Birthday.
  7. \harvarditem[Beresteanu and Molinari]Beresteanu and Molinari2008beresteanumolinari2008 Beresteanu, A., and F. Molinari (2008): “Asymptotic Properties for a Class of Partially Identified Models,” Econometrica, 76(4), 763–814.
  8. \harvarditem[Bierens and Hartog]Bierens and Hartog1988bierenshartog Bierens, H., and J. Hartog (1988): “Non-Linear Regression with Discrete Explanatory Variables, with an Application to the Earnings Function,” Journal of Econometrics, 38(3), 269–299.
  9. \harvarditem[Cattaneo, Jansson, and Nagasawa]Cattaneo, Jansson, and Nagasawa2020cattaneojansson2020 Cattaneo, M., M. Jansson, and K. Nagasawa (2020): “Bootstrap Based Inference for Cube Root Asymptotics,” Econometrica, 88, 2203–2219.
  10. \harvarditem[Chamberlain]Chamberlain2010chamberlain2010 Chamberlain, G. (2010): “Binary Response Models for Panel Data: Identification and Information,” Econometrica, 78, 159–168.
  11. \harvarditem[Chen, Lee, and Sung]Chen, Lee, and Sung2014chenetal2014 Chen, L.-Y., S. Lee, and M. Sung (2014): “Maximum Score Estimation with Nonparametrically Generated Regressors,” Econometrics Journal, 17, 271–300.
  12. \harvarditem[Chesher, Rosen, and Zhang]Chesher, Rosen, and Zhang2023crz2023 Chesher, A., A. Rosen, and Y. Zhang (2023): “Identification Analysis in Models With Unrestricted Lastent Variables: Fixed Effects and Initiak Conditions,” University of College London Working Paper.
  13. \harvarditem[Dobronyi, Gu, and Kim]Dobronyi, Gu, and Kim2023dobronyietal2023 Dobronyi, C., J. Gu, and K. Kim (2023): “Identification of Dynamic Panel Logit Models with Fixed Effects,” University of Toronto Working Paper.
  14. \harvarditem[Gao and Wang]Gao and Wang2023gaowang2023 Gao, W., and R. Wang (2023): “Identification of Dynamic Nonlinear Panel Models under Partial Stationarity,” University of Pennsylvania Working Paper.
  15. \harvarditem[Han]Han1987MRC Han, A. (1987): “The Maximum Rank Correlation Estimator,” Journal of Econometrics, 303-316.
  16. \harvarditem[Hodges Jr and Lehmann]Hodges Jr and Lehmann2011hodges Hodges Jr, J., and E. L. Lehmann (2011): “Some problems in minimax point estimation,” in Selected Works of EL Lehmann, pp. 15–30. Springer.
  17. \harvarditem[Honore and Kyriazidou]Honore and Kyriazidou2000honorekyriazidou Honore, B., and E. Kyriazidou (2000): “Panel Data Discrete Choice Models with Lagged Dependent Variables,” Econometrica, 68, 839–874.
  18. \harvarditem[Honore and Weidner]Honore and Weidner2023honoreweidner2023 Honore, B. E., and M. Weidner (2023): “Moment Conditions for Dynamic Panel Logit Models with Fixed Effects,” Princeton University Working Paper.
  19. \harvarditem[Horowitz]Horowitz1992horowitz-sms Horowitz, J. (1992): “A Smoothed Maximum Score Estimator for the Binary Response Model,” Econometrica, 60(3).
  20. \harvarditem[Ichimura]Ichimura1994ichimura1994 Ichimura, H. (1994): “Local Quantile Regression Estimation of Binary Response Models with Conditional Heteroskedasticity,” University of Pittsburgh Working Paper.
  21. \harvarditem[Khan]Khan2001khan2001 Khan, S. (2001): “Two Stage Rank Estimation of Quantile Index Models,” Journal of Econometrics, 100, 319–355.
  22. \harvarditem[Khan]Khan2013khan:13 Khan, S. (2013): “Distribution free estimation of heteroskedastic binary response models using probit/logit criterion functions,” Journal of Econometrics, 172(1), 168–182.
  23. \harvarditem[Khan, Ponomareva, and Tamer]Khan, Ponomareva, and Tamer2022kpt2022 Khan, S., M. Ponomareva, and E. Tamer (2022): “Identification of Dynamic Binary Response Models,” Journal of Econometrics, forthcoming.
  24. \harvarditem[Kim and Pollard]Kim and Pollard1990kimpollard Kim, J., and D. Pollard (1990): “Cube Root Asymptotics,” Annals of Statistics, 18, 191–219.
  25. \harvarditem[Kitazawa]Kitazawa2022kitazawa2022 Kitazawa, Y. (2022): “Transformations and Moment Conditions for Dynamic Fixed Effects Logit Models,” Journal of Econometrics, 229, 350–362.
  26. \harvarditem[Komarova]Komarova2013komarova2013 Komarova, T. (2013): “Binary choice models with discrete regressors: Identification and misspecification,” Journal of Econometrics, 177(1), 14–33.
  27. \harvarditem[LeCam]LeCam1953Lecam1953 LeCam, L. (1953): “On Some Asymptotic Properties of Maximum Likelihood Estimates and Related Bayes Estimates,” University of California Publications in Statistics, 1, 277–330.
  28. \harvarditem[Leeb and Pötscher]Leeb and Pötscher2005LeebPots2005 Leeb, H., and B. Pötscher (2005): “Model Selection and Inference: Facts and Fiction,” Econometric Theory, 21, 21–59.
  29. \harvarditem[Leeb and Pötscher]Leeb and Pötscher2006LeebPots2006    (2006): “Performance Limits for Estimators of the Risk or Distribution of Shrinkage-type Estimators, and some General Lower Risk-bound Results,” Econometric Theory, 22, 69–97.
  30. \harvarditem[Leeb and Pötscher]Leeb and Pötscher2008LeebPots2008    (2008): “Sparse Estimators and the Oracle Property, or the Return of the Hodges’ Estimator,” Journal of Econometrics, 142, 201–211.
  31. \harvarditem[Manski]Manski1975manski1975 Manski, C. F. (1975): “Maximum Score Estimation of the Stochastic Utility Model of Choice,” Journal of Econometrics, 3(3), 205–228.
  32. \harvarditem[Manski]Manski1985manski1985    (1985): “Semiparametric Analysis of Discrete Response: Asymptotic Properties of the Maximum Score Estimator,” Journal of Econometrics, 27(3), 313–33.
  33. \harvarditem[Manski]Manski1987manski1987 Manski, C. F. (1987): “Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data,” Econometrica, 55(2), 357–362.
  34. \harvarditem[Molchanov]Molchanov2006molchanov2006book Molchanov, I. (2006): Theory of Random Sets. Springer Science & Business Media.
  35. \harvarditem[Rosen and Ura]Rosen and Ura2022rosenura2022 Rosen, A., and T. Ura (2022): “Finite Sample Inference for the Maximum Score Estimand,” Duke University Working Paper.

Summary

We haven't generated a summary for this paper yet.