Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Aerodynamic Model Aided Invariant Kalman Filtering for UAV Full-State Estimation (2310.01844v1)

Published 3 Oct 2023 in cs.RO

Abstract: Due to the state trajectory-independent features of invariant Kalman filtering (InEKF), it has attracted widespread attention in the research community for its significantly improved state estimation accuracy and convergence under disturbance. In this paper, we formulate the full-source data fusion navigation problem for fixed-wing unmanned aerial vehicle (UAV) within a framework based on error state right-invariant extended Kalman filtering (ES-RIEKF) on Lie groups. We merge measurements from a multi-rate onboard sensor network on UAVs to achieve real-time estimation of pose, air flow angles, and wind speed. Detailed derivations are provided, and the algorithm's convergence and accuracy improvements over established methods like Error State EKF (ES-EKF) and Nonlinear Complementary Filter (NCF) are demonstrated using real-flight data from UAVs. Additionally, we introduce a semi-aerodynamic model fusion framework that relies solely on ground-measurable parameters. We design and train an Long Short Term Memory (LSTM) deep network to achieve drift-free prediction of the UAV's angle of attack (AOA) and side-slip angle (SA) using easily obtainable onboard data like control surface deflections, thereby significantly reducing dependency on GNSS or complicated aerodynamic model parameters. Further, we validate the algorithm's robust advantages under GNSS denied, where flight data shows that the maximum positioning error stays within 30 meters over a 130-second denial period. To the best of our knowledge, this study is the first to apply ES-RIEKF to full-source navigation applications for fixed-wing UAVs, aiming to provide engineering references for designers. Our implementations using MATLAB/Simulink will open source.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. X. Ye, F. Song, Z. Zhang, and Q. Zeng, “A review of small uav navigation system based on multi-source sensor fusion,” IEEE Sensors Journal, 2023.
  2. S. Bijjahalli, R. Sabatini, and A. Gardi, “Advances in intelligent and autonomous navigation systems for small uas,” Progress in Aerospace Sciences, vol. 115, p. 100617, 2020.
  3. Y. Yang, X. Liu, X. Liu, Y. Guo, and W. Zhang, “Variational adaptive lm-iekf for full state navigation system of wind disturbance and observability analysis,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12, 2022.
  4. Q. Meng and L.-T. Hsu, “Resilient interactive sensor-independent-update fusion navigation method,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16 433–16 447, 2022.
  5. M. Nazarahari and H. Rouhani, “40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: Methods, lessons learned, and future challenges,” Information Fusion, vol. 68, pp. 67–84, 2021.
  6. G. Yan and Y. Deng, “Review on practical kalman filtering techniques in traditional integrated navigation systemreview on practical kalman filtering techniques in traditional integrated navigation system,” Navigation Positioning and Timing, vol. 7, no. 2, pp. 50–64, 2020.
  7. R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.
  8. T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of the ekf-slam algorithm,” in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2006, pp. 3562–3568.
  9. H. B. Christophersen, R. W. Pickell, J. C. Neidhoefer, A. A. Koller, S. K. Kannan, and E. N. Johnson, “A compact guidance, navigation, and control system for unmanned aerial vehicles,” Journal of aerospace computing, information, and communication, vol. 3, no. 5, pp. 187–213, 2006.
  10. P.-J. Bristeau, E. Dorveaux, D. Vissière, and N. Petit, “Hardware and software architecture for state estimation on an experimental low-cost small-scaled helicopter,” Control Engineering Practice, vol. 18, no. 7, pp. 733–746, 2010.
  11. (2018) Estimation and control library. [Online]. Available: https://github.com/PX4/PX4-Autopilot
  12. R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided invariant extended kalman filtering for robot state estimation,” International Journal of Robotics Research, vol. 39, no. 4, pp. 402–430, 2020.
  13. A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE international conference on robotics and automation.   IEEE, 2007, pp. 3565–3572.
  14. M. Li and A. I. Mourikis, “Improving the accuracy of ekf-based visual-inertial odometry,” in 2012 IEEE International Conference on Robotics and Automation.   IEEE, 2012, pp. 828–835.
  15. P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins: A research platform for visual-inertial estimation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 4666–4672.
  16. V. Madyastha, V. Ravindra, S. Mallikarjunan, and A. Goyal, “Extended kalman filter vs. error state kalman filter for aircraft attitude estimation,” in AIAA Guidance, Navigation, and Control Conference, 2011, p. 6615.
  17. T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.
  18. W. Xiwei, X. Bing, W. Cihang, G. Yiming, and L. Lingwei, “Factor graph based navigation and positioning for control system design: A review,” Chinese Journal of Aeronautics, vol. 35, no. 5, pp. 25–39, 2022.
  19. F. Dellaert, “Factor graphs: Exploiting structure in robotics,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 141–166, 2021.
  20. A. Barrau and S. Bonnabel, “The invariant extended kalman filter as a stable observer,” Ieee Transactions on Automatic Control, vol. 62, no. 4, pp. 1797–1812, 2017.
  21. A. Barrau and S. Bonnabel, “Invariant kalman filtering,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 237–257, 2018.
  22. T. Zhang, K. Z. Wu, J. W. Song, S. D. Huang, and G. Dissanayake, “Convergence and consistency analysis for a 3-d invariant-ekf slam,” Ieee Robotics and Automation Letters, vol. 2, no. 2, pp. 733–740, 2017.
  23. J. R. Cui, M. S. Wang, W. Q. Wu, and X. F. He, “Lie group based nonlinear state errors for mems-imu/gnss/magnetometer integrated navigation,” Journal of Navigation, vol. 74, no. 4, pp. 887–900, 2021.
  24. E. Potokar, K. Norman, and J. Mangelson, “Invariant extended kalman filtering for underwater navigation,” Ieee Robotics and Automation Letters, vol. 6, no. 3, pp. 5792–5799, 2021.
  25. H. W. Changwu Liu, Chen Jiang, “Ingvio: A consistent invariant filter for fast and high-accuracy gnss-visual-inertial odometry,” arXiv, vol. 2210.15145v1, 2022.
  26. Y. L. Yang, C. C. Chen, W. Lee, and G. Q. Huang, “Decoupled right invariant error states for consistent visual-inertial navigation,” Ieee Robotics and Automation Letters, vol. 7, no. 2, pp. 1627–1634, 2022.
  27. S. Y. Du, Y. L. Huang, B. Q. Lin, J. H. Qian, and Y. G. Zhang, “A lie group manifold-based nonlinear estimation algorithm and its application to low-accuracy sins/gnss integrated navigation,” Ieee Transactions on Instrumentation and Measurement, vol. 71, 2022.
  28. J. H. Hwang, J. Cha, and C. G. Park, “A novel federated structure of invariant ekf using left-/right-invariant observations,” Ieee Sensors Journal, vol. 22, no. 21, pp. 20 645–20 654, 2022.
  29. P. Tian, H. Chao, H. P. Flanagan, S. G. Hagerott, and Y. Gu, “Design and evaluation of uav flow angle estimation filters,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 1, pp. 371–383, 2018.
  30. W. Youn, H. Choi, A. Cho, S. Kim, and M. B. Rhudy, “Aerodynamic model-aided estimation of attitude, 3-d wind, airspeed, aoa, and ssa for high-altitude long-endurance uav,” IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 6, pp. 4300–4314, 2020.
  31. P. Tian, H. Chao, M. Rhudy, J. Gross, and H. Wu, “Wind sensing and estimation using small fixed-wing unmanned aerial vehicles: A survey,” Journal of Aerospace Information Systems, vol. 18, no. 3, pp. 132–143, 2021.
  32. Y. Yang, X. Liu, X. Liu, Y. Guo, and W. Zhang, “Model-free integrated navigation of small fixed-wing uavs full state estimation in wind disturbance,” IEEE Sensors Journal, vol. 22, no. 3, pp. 2771–2781, 2022.
  33. Z. A. Zhu, S. M. R. Sorkhabadi, Y. Gu, W. L. Zhang, and Ieee, “Invariant extended kalman filtering for human motion estimation with imperfect sensor placement,” in American Control Conference (ACC), 2022, Conference Proceedings, pp. 3012–3018.
  34. A. Barrau, “Non-linear state error based extended kalman filters with applications to navigation,” Ph.D. dissertation, Mines Paristech, 2015.
  35. H. Chao, H. P. Flanagan, P. Tian, and S. G. Hagerott, “Flight test investigation of stall/spin detection techniques for a flying wing uas,” in AIAA Atmospheric Flight Mechanics Conference, 2017, p. 1631.
  36. R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary filters on the special orthogonal group,” IEEE Transactions on automatic control, vol. 53, no. 5, pp. 1203–1218, 2008.
  37. X. Ye, Y. Zeng, Q. Zeng, and Y. Zou, “Airspeed-aided state estimation algorithm of small fixed-wing uavs in gnss-denied environments,” Sensors, vol. 22, no. 9, p. 3156, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.