Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Volumetric Approach to Monge's Optimal Transport on Surfaces (2310.01745v3)

Published 3 Oct 2023 in math.NA and cs.NA

Abstract: We propose a volumetric formulation for computing the Optimal Transport problem defined on surfaces in $\mathbb{R}3$, found in disciplines like optics, computer graphics, and computational methodologies. Instead of directly tackling the original problem on the surface, we define a new Optimal Transport problem on a thin tubular region, $T_{\epsilon}$, adjacent to the surface. This extension offers enhanced flexibility and simplicity for numerical discretization on Cartesian grids. The Optimal Transport mapping and potential function computed on $T_{\epsilon}$ are consistent with the original problem on surfaces. We demonstrate that, with the proposed volumetric approach, it is possible to use simple and straightforward numerical methods to solve Optimal Transport for $\Gamma = \mathbb{S}2$ and the $2$-torus.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. Estimating the reach of a manifold. Electronic Journal of Statistics, 13(1):1359 – 1399, 2019.
  2. A third order accurate fast marching method for the eikonal equation in two dimensions. SIAM Journal on Scientific Computing, 33(5):2402–2420, 2011.
  3. G. Bao and Y. Zhang. Optimal transportation for electrical impedance tomography. arXiv, 2022.
  4. G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis, 4:271–283, 1991.
  5. Diffeomorphic density matching by optimal information transport. Society for Industrial and Applied Mathematics Journal on Imaging Sciences, 8(3):1718–1751, 2015.
  6. A second order virtual node method for elliptic problems with interfaces and irregular domains. Journal of Computational Physics, 229(18):6405–6426, 2010.
  7. S. C. Brenner and M. Neilan. Finite element approximations of the three dimensional monge-ampère equation. ESAIM-Mathematical Modelling and Numerical Analysis, 46:979–1001, 2012.
  8. Designing illumination lenses and mirrors by the numerical solution of Monge-Ampère equations. Journal of the Optical Society of America A, 32(11):2227–2236, 2015.
  9. The scaling and skewness of optimally transported meshes on the sphere. Journal of Computational Physics, 375:540–564, December 2018.
  10. Far-field reflector problem and intersection of paraboloids. Numerische Mathematik, 134(10), 2016.
  11. Far-field reflector problem and intersection of paraboloids. Numerische Mathematik, 134:389–411, 2016.
  12. L. Cheng and R. Tsai. Redistancing by flow of time dependent eikonal equation. Journal of Computational Physics, 227, 2008.
  13. J. Chu and R. Tsai. Volumetric variational principles for a class of partial differential equations defined on surfaces and curves. Res Math Sci, 5(19), 2018.
  14. Spherical optimal transportation. Computer-Aided Design, 115:181–193, 2019.
  15. M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation distances. Advances in Neural Information Processing Systems, 26, June 2013.
  16. Optimal mass transportation and linear assignment problems in the design of freeform refractive optical elements generating far-field irradiance distributions. Optics Express, 27(9):13083–13097, 2019.
  17. Discretization of dirac delta functions in level set methods. Journal of Computational Physics, 207(1):28–51, 2005.
  18. H. Federer. Curvature measures. Transactions of the American Mathematical Society, (93):418–491, 1959.
  19. T. Glimm and V. Oliker. Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem. Journal of Mathematical Sciences, 117(3):4096–4108, 2003.
  20. B. D. Hamfeldt. Convergence framework for the second boundary value problem for the Monge-Ampère equation. Society for Industrial and Applied Mathematics Journal on Numerical Analysis, 57(2):945–971, January 2019.
  21. B. F. Hamfeldt and J. Lesniewski. Convergent finite difference methods for fully nonlinear elliptic equations in three dimensions. Journal of Scientific Computing, 90(35), March 2022.
  22. A convergent finite difference method for optimal transport on the sphere. Journal of Computational Physics, 445, November 2021.
  23. Convergent numerical method for the reflector antenna problem via optimal transport on the sphere. Journal of the Optical Society of America A, 38:1704–1713, 2021.
  24. A convergence framework for optimal transport on the sphere. Numerische Mathematik, 151:627–657, June 2022.
  25. A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions. Journal of Computational Physics, 231(4):2015–2048, 2012.
  26. Convergence of a class of high order corrected trapezoidal rules. arXiv preprint arXiv:2208.08216, 2022.
  27. High-order corrected trapezoidal rules for a class of singular integrals. Advances in Computational Mathematics, 49(4):60, 2023.
  28. Skeletonization via distance maps and level sets. Computer vision and image understanding, 62(3):382–391, 1995.
  29. C. Kublik and R. Tsai. Integration over curves and surfaces defined by the closest point mapping. Research in the mathematical sciences, 3(3), 2016.
  30. C. Kublik and R. Tsai. An extrapolative approach to integration over hypersurfaces in the level set framework. Mathematics of Computation, 2018.
  31. Dynamic optimal transport on discrete surfaces. ACM Transactions on Graphics (SIGGRAPH Asia 2018), 37(6), December 2018.
  32. J. Liang and H. Zhao. Solving partial differential equations on point clouds. SIAM Journal on Scientific Computing, 35(3), May 2013.
  33. G. Loeper. On the regularity of solutions of optimal transportation problems. Acta Mathematica, 202:241–283, 2009.
  34. Regularity of potential functions of the optimal transportation problem. Archive for Rational Mechanics and Analysis, 177(2):151–183, 2005.
  35. The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM Journal on Scientific Computing, 31(6):4330–4350, 2010.
  36. L. Martin and Y.-H. R. Tsai. Equivalent extensions of Hamilton–Jacobi–Bellman equations on hypersurfaces. Journal of Scientific Computing, 84(3):43, 2020.
  37. R. J. McCann. Polar factorization of maps on Riemannian manifolds. Geometric and Functional Analysis, 11:589–608, 2001.
  38. An algorithm for optimal transport beween a simplex soup and a point cloud. SIAM Journal on Imaging Sciences, 11(2):1363–1389, 2018.
  39. C. Min and F. Gibou. Geometric integration over irregular domains with application to level-set methods. Journal of Computational Physics, 226(2):1432–1443, 2007.
  40. C. Min and F. Gibou. A second order accurate level set method on non-graded adaptive cartesian grids. Journal of Computational Physics, 225(1):300–321, 2007.
  41. A. M. Oberman. Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. Society for Industrial and Applied Mathematics Journal on Numerical Analysis, 44(2):879–895, 2006.
  42. V. Oliker. Freeform optical systems with prescribed irradiance properties in near-field. In International Optical Design Conference 2006, volume 6342, page 634211, California, United States, 2006. International Society for Optics and Photonics.
  43. Supporting quadric method in optical design of freeform lenses for illumination control of a collimated light. Advances in Applied Mathematics, 62:160–183, 2015.
  44. Freeform lens design for a point source and far-field target. Journal of the Optical Society of America A, 36(11):1926–1939, 2019.
  45. L. B. Romijn. Generated Jacobian Equations in Freeform Optical Design: Mathematical Theory and Numerics. PhD thesis, Eindhoven University of Technology, 2021.
  46. Inverse reflector design for a point source and far-field target. Journal of Computational Physics, 408:109283, 2020.
  47. S. Ruuth and B. Merriman. A simple embedding method for solving partial differential equations on surfaces. Journal of Computational Physics, 227(3):1943–1961, 2008.
  48. F. Santambrogio. Optimal Transport for Applied Mathematicians, volume 55. Birkhäuser, Basel, Switzerland, 2015.
  49. H. Schaeffer and T. Y. Hou. An accelerated method for nonlinear elliptic PDE. Journal of Scientific Computing, 69(2):556–580, 2016.
  50. J. A. Sethian. Fast marching methods. SIAM Review, 41(2):199–235, 1999.
  51. Earth mover’s distances on discrete surfaces. Association for Computing Machinery Transactions on Graphics, 33(4):1–12, July 2014.
  52. Y.-H. R. Tsai. Rapid and accurate computation of the distance function using grids. Journal of Computational Physics, 178(1):175–195, 2002.
  53. A. G. R. Turnquist. Optimal transport with defective cost functions with applications to the lens refractor problem. arXiv preprint arXiv:2308.08701, August 2023.
  54. A. G. R. Turnquist. Adaptive mesh methods on compact manifolds via optimal transport and optimal information transport. Journal of Computational Physics, 500(112726), March 2024.
  55. J. Urbas. On the second boundary value problem for equations of Monge-Ampère type. Journal für die reine und angewandte Mathematik, 487:115–124, 1997.
  56. X.-J. Wang. On the design of a reflector antenna. IOP Science, 12:351–375, 1996.
  57. X.-J. Wang. On the design of a reflector antenna II. Calculus of Variations and Partial Differential Equations, 20(3):329–341, 2004.
  58. Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge-Ampère type equation. Journal of Computational Physics, 308:102–123, 2016.
  59. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation. Optics Letters, 38(2):229–231, 2013.
  60. N. K. Yadav. Monge-Ampère Problems with Non-Quadratic Cost Function: Application to Freeform Optics. PhD thesis, Technische Universiteit Eindhoven, Eindhoven, Netherlands, 2018.
  61. Computational mean-field games on manifolds. Journal of Computational Physics, 484(112070), July 2023.
  62. High order fast sweeping methods for static Hamilton-Jacobi equations. Journal of Scientific Computing, 29(1):25–56, 2006.
  63. Error analysis for the implicit boundary integral method. arXiv preprint arXiv:2312.07722, 2023.

Summary

We haven't generated a summary for this paper yet.