Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Correction for DNA Storage (2310.01729v1)

Published 3 Oct 2023 in cs.IT and math.IT

Abstract: DNA-based storage is an emerging storage technology that provides high information density and long duration. Due to the physical constraints in the reading and writing processes, error correction in DNA storage poses several interesting coding theoretic challenges, some of which are new. In this paper, we give a brief introduction to some of the coding challenges for DNA-based storage, including deletion/insertion correcting codes, codes over sliced channels, and duplication correcting codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (125)
  1. N. Alon, J. Bruck, F. Farnoud, and S. Jain, “Duplication distance to the root for binary sequences,” IEEE Transactions on Information Theory, vol. 63, no. 12, pp. 7793–7803, Dec. 2017.
  2. N. Alon, G. Bourla, B. Graham, X. He, and N. Kravitz, “Logarithmically larger deletion codes of all distances,” IEEE Transactions on Information Theory, 2023.
  3. P. L. Antkowiak, J. Lietard, M. Z. Darestani, M. M. Somoza, W. J. Stark, R. Heckel, and R. N. Grass, “Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction and error correction,” Nature Communications, vol. 11, no. 1, p. 5345, 2020.
  4. D. Bar-Lev, S. M. E. Yaakobi, and Y. Yehezkeally, “Adversarial torn-paper codes,” IEEE Transactions on Information Theory, 2023.
  5. D. Belazzougui, “Efficient deterministic single round document exchange for edit distance,” arXiv preprint arXiv:1511.09229, 2015.
  6. D. Belazzougui and Q. Zhang, “Edit distance: Sketching, streaming, and document exchange,” in 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).   IEEE, 2016, pp. 51–60.
  7. E. Ben-Tolila and M. Schwartz, “On the reverse-complement string-duplication system,” IEEE Transactions on Information Theory, vol. 68, no. 11, pp. 7184–7197, Nov. 2022.
  8. E. R. Berlekamp, “The technology of error-correcting codes,” Proceedings of the IEEE, vol. 68, no. 5, pp. 564–593, 1980.
  9. M. Blawat, K. Gaedke, I. Huetter, X.-M. Chen, B. Turczyk, S. Inverso, B. W. Pruitt, and G. M. Church, “Forward error correction for DNA data storage,” Procedia Computer Science, vol. 80, pp. 1011–1022, 2016.
  10. J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K. Strauss, “A DNA-based archival storage system,” in Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems, 2016, pp. 637–649.
  11. J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy codes for correcting multiple deletions,” IEEE Transactions on Information Theory, vol. 64, no. 5, pp. 3403–3410, 2017.
  12. K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen, “Correcting a single indel/edit for DNA-based data storage: Linear-time encoders and order-optimality,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 3438–3451, 2021.
  13. D. Chakraborty, E. Goldenberg, and M. Kouckỳ, “Low distortion embedding from edit to hamming distance using coupling.” in Electronic Colloquium on Computational Complexity, vol. 22, 2015, p. 111.
  14. S. Chandak, K. Tatwawadi, B. Lau, J. Mardia, M. Kubit, J. Neu, P. Griffin, M. Wootters, T. Weissman, and H. Ji, “Improved read/write cost tradeoff in DNA-based data storage using ldpc codes,” in 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton).   IEEE, 2019, pp. 147–156.
  15. Z. Chang, J. Chrisnata, M. F. Ezerman, and H. M. Kiah, “Rates of DNA sequence profiles for practical values of read lengths,” IEEE Transactions on Information Theory, vol. 63, no. 11, pp. 7166–7177, 2017.
  16. Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Efficient encoding/decoding of GC-balanced codes correcting tandem duplications,” IEEE Transactions on Information Theory, vol. 66, no. 8, pp. 4892–4903, Aug. 2020.
  17. K. Cheng, Z. Jin, X. Li, and K. Wu, “Block edit errors with transpositions: Deterministic document exchange protocols and almost optimal binary codes,” arXiv preprint arXiv:1809.00725, 2018.
  18. ——, “Deterministic document exchange protocols and almost optimal binary codes for edit errors,” Journal of the ACM, vol. 69, no. 6, pp. 1–39, 2022.
  19. M. Cheraghchi, “Capacity upper bounds for deletion-type channels,” Journal of the ACM (JACM), vol. 66, no. 2, pp. 1–79, 2019.
  20. M. Cheraghchi and J. Ribeiro, “An overview of capacity results for synchronization channels,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 3207–3232, 2020.
  21. G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital information storage in DNA,” Science, vol. 337, no. 6102, pp. 1628–1628, 2012.
  22. G. Cormode, M. S. Paterson, S. C. Sahinalp, and U. Vishkin, “Communication complexity of document exchange,” 1999.
  23. D. Cullina and N. Kiyavash, “An improvement to levenshtein’s upper bound on the cardinality of deletion correcting codes,” IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 3862–3870, 2014.
  24. J. Davis, “Microvenus,” Art Journal, vol. 55, no. 1, pp. 70–74, 1996.
  25. S. N. Diggavi and M. Grossglauser, “On transmission over deletion channels,” in Proceedings of the Annual Allerton Conference on Communication Control and Computing, vol. 39, no. 1.   Citeseer, 2001, pp. 573–582.
  26. R. L. Dobrushin, “Shannon’s theorems for channels with synchronization errors,” Problemy Peredachi Informatsii, vol. 3, no. 4, pp. 18–36, 1967.
  27. L. Dolecek and V. Anantharam, “Repetition error correcting sets: Explicit constructions and prefixing methods,” SIAM Journal on Discrete Mathematics, vol. 23, no. 4, pp. 2120–2146, 2010.
  28. Y. Dong, F. Sun, Z. Ping, Q. Ouyang, and L. Qian, “DNA storage: research landscape and future prospects,” National Science Review, vol. 7, no. 6, pp. 1092–1107, 2020.
  29. E. Drinea and M. Mitzenmacher, “Improved lower bounds for the capacity of iid deletion and duplication channels,” IEEE Transactions on Information Theory, vol. 53, no. 8, pp. 2693–2714, 2007.
  30. O. Elishco, F. Farnoud, M. Schwartz, and J. Bruck, “The entropy rate of some Pólya string models,” IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 8180–8193, Dec. 2019.
  31. Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient storage architecture,” Science, vol. 355, no. 6328, pp. 950–954, 2017.
  32. F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-duplication systems,” IEEE Transactions on Information Theory, vol. 62, no. 2, pp. 811–824, Feb. 2016.
  33. ——, “Estimation of duplication history under a stochastic model for tandem repeats,” BMC Bioinformatics, vol. 20, no. 64, pp. 1–11, Feb. 2019.
  34. R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu, “Beyond single-deletion correcting codes: substitutions and transpositions,” IEEE Transactions on Information Theory, vol. 69, no. 1, pp. 169–186, 2022.
  35. R. Gabrys and O. Milenkovic, “Unique reconstruction of coded sequences from multiset substring spectra,” in 2018 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2018, pp. 2540–2544.
  36. R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau distance for deletion and adjacent transposition correction,” IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 2550–2570, 2017.
  37. N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, and E. Birney, “Towards practical, high-capacity, low-maintenance information storage in synthesized DNA,” Nature, vol. 494, no. 7435, pp. 77–80, 2013.
  38. R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust chemical preservation of digital information on DNA in silica with error-correcting codes,” Angewandte Chemie International Edition, vol. 54, no. 8, pp. 2552–2555, 2015.
  39. V. Guruswami and J. Håstad, “Explicit two-deletion codes with redundancy matching the existential bound,” IEEE Transactions on Information Theory, vol. 67, no. 10, pp. 6384–6394, 2021.
  40. V. Guruswami and R. Li, “Efficiently decodable insertion/deletion codes for high-noise and high-rate regimes,” in 2016 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2016, pp. 620–624.
  41. V. Guruswami and C. Wang, “Deletion codes in the high-noise and high-rate regimes,” IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 1961–1970, 2017.
  42. B. Haeupler, “Optimal document exchange and new codes for insertions and deletions,” in 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).   IEEE, 2019, pp. 334–347.
  43. B. Haeupler and A. Shahrasbi, “Synchronization strings: codes for insertions and deletions approaching the singleton bound,” in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017, pp. 33–46.
  44. M. Hagiwara, “On ordered syndromes for multi insertion/deletion error-correcting codes,” in 2016 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2016, pp. 625–629.
  45. R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the DNA data storage channel,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019.
  46. R. Heckel, I. Shomorony, K. Ramchandran, and N. David, “Fundamental limits of DNA storage systems,” in 2017 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2017, pp. 3130–3134.
  47. A. S. Helberg and H. C. Ferreira, “On multiple insertion/deletion correcting codes,” IEEE Transactions on Information Theory, vol. 48, no. 1, pp. 305–308, 2002.
  48. U. Irmak, S. Mihaylov, and T. Suel, “Improved single-round protocols for remote file synchronization,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., vol. 3.   IEEE, 2005, pp. 1665–1676.
  49. S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of genomic tandem duplication,” IEEE Transactions on Information Theory, vol. 63, no. 10, pp. 6129–6138, Oct. 2017.
  50. S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting codes for data storage in the DNA of living organisms,” IEEE Transactions on Information Theory, vol. 63, no. 8, pp. 4996–5010, Aug. 2017.
  51. H. Jowhari, “Efficient communication protocols for deciding edit distance,” in Algorithms–ESA 2012: 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings 20.   Springer, 2012, pp. 648–658.
  52. A. Kalai, M. Mitzenmacher, and M. Sudan, “Tight asymptotic bounds for the deletion channel with small deletion probabilities,” in 2010 IEEE International Symposium on Information Theory.   IEEE, 2010, pp. 997–1001.
  53. Y. Kanoria and A. Montanari, “Optimal coding for the binary deletion channel with small deletion probability,” IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6192–6219, 2013.
  54. H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence profiles,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3125–3146, 2016.
  55. A. Kirsch and E. Drinea, “Directly lower bounding the information capacity for channels with iid deletions and duplications,” IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 86–102, 2009.
  56. M. Kovačević and V. Y. Tan, “Codes in the space of multisets—coding for permutation channels with impairments,” IEEE Transactions on Information Theory, vol. 64, no. 7, pp. 5156–5169, 2018.
  57. M. Kovačević and D. Vukobratović, “Perfect codes in the discrete simplex,” Designs, Codes and Cryptography, vol. 75, pp. 81–95, 2015.
  58. M. Kovačević, “Zero-error capacity of duplication channels,” IEEE Transactions on Communications, vol. 67, no. 10, pp. 6735–6742, 2019.
  59. M. Kovačević and V. Y. F. Tan, “Asymptotically optimal codes correcting fixed-length duplication errors in DNA storage systems,” IEEE Communications Letters, vol. 22, no. 11, pp. 2194–2197, 2018.
  60. E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001.
  61. M. Langberg, M. Schwartz, and E. Yaakobi, “Coding for the ℓ∞subscriptbold-ℓ\bm{\ell}_{\infty}bold_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-limited permutation channel,” IEEE Transactions on Information Theory, vol. 63, no. 12, pp. 7676–7686, 2017.
  62. T. A. Le and H. D. Nguyen, “New multiple insertion-deletion correcting codes for non-binary alphabets,” arXiv preprint arXiv:1502.02727, 2015.
  63. A. Lenz and N. Polyanskii, “Optimal codes correcting a burst of deletions of variable length,” in 2020 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2020, pp. 757–762.
  64. A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-based correction of substitutions in indexed sets,” in 2019 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2019, pp. 757–761.
  65. ——, “Coding over sets for DNA storage,” IEEE Transactions on Information Theory, vol. 66, no. 4, pp. 2331–2351, 2019.
  66. ——, “An upper bound on the capacity of the DNA storage channel,” in 2019 IEEE Information Theory Workshop (ITW).   IEEE, 2019, pp. 1–5.
  67. ——, “Achieving the capacity of the DNA storage channel,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2020, pp. 8846–8850.
  68. A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-correcting codes,” Designs, Codes and Cryptography, vol. 87, pp. 277–298, 2019.
  69. V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet Physics Doklady, vol. 10, no. 8.   Soviet Union, 1966, pp. 707–710.
  70. ——, “Bounds for deletion/insertion correcting codes,” in Proceedings IEEE International Symposium on Information Theory,.   IEEE, 2002, p. 370.
  71. S. Liu and C. Xing, “Bounds and constructions for insertion and deletion codes,” IEEE Transactions on Information Theory, 2022.
  72. H. Lou, M. Schwartz, J. Bruck, and F. Farnoud, “Evolution of k𝑘kitalic_k-mer frequencies and entropy in duplication and substitution mutation systems,” IEEE Transactions on Information Theory, vol. 66, no. 5, pp. 3171–3186, May 2020.
  73. H. Mahdavifar and A. Vardy, “Asymptotically optimal sticky-insertion-correcting codes with efficient encoding and decoding,” in 2017 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2017, pp. 2683–2687.
  74. A. Makur, “Coding theorems for noisy permutation channels,” IEEE Transactions on Information Theory, vol. 66, no. 11, pp. 6723–6748, 2020.
  75. H. Mercier, V. K. Bhargava, and V. Tarokh, “A survey of error-correcting codes for channels with symbol synchronization errors,” IEEE Communications Surveys & Tutorials, vol. 12, no. 1, pp. 87–96, 2010.
  76. M. Mitzenmacher, “A survey of results for deletion channels and related synchronization channels,” 2009.
  77. L. Organick, S. D. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin, K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen et al., “Scaling up DNA data storage and random access retrieval,” BioRxiv, p. 114553, 2017.
  78. A. Orlitsky, “Interactive communication of balanced distributions and of correlated files,” SIAM Journal on Discrete Mathematics, vol. 6, no. 4, pp. 548–564, 1993.
  79. A. N. Ravi, A. Vahid, and I. Shomorony, “Capacity of the torn paper channel with lost pieces,” in 2021 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2021, pp. 1937–1942.
  80. N. Raviv, M. Schwartz, and E. Yaakobi, “Rank-modulation codes for DNA storage with shotgun sequencing,” IEEE Transactions on Information Theory, vol. 65, no. 1, pp. 50–64, 2018.
  81. D. Sankoff and J. B. Kruskal, “Time warps, string edits, and macromolecules: the theory and practice of sequence comparison,” Reading: Addison-Wesley Publication, 1983.
  82. C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes correcting a burst of deletions or insertions,” IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 1971–1985, 2017.
  83. L. J. Schulman and D. Zuckerman, “Asymptotically good codes correcting insertions, deletions, and transpositions,” IEEE Transactions on Information Theory, vol. 45, no. 7, pp. 2552–2557, 1999.
  84. F. Sellers, “Bit loss and gain correction code,” IRE Transactions on Information theory, vol. 8, no. 1, pp. 35–38, 1962.
  85. T. Shinkar, E. Yaakobi, A. Lenz, and A. Wachter-Zeh, “Clustering-correcting codes,” IEEE Transactions on Information Theory, vol. 68, no. 3, pp. 1560–1580, 2021.
  86. S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church, “CRISPR-Cas encoding of digital movie into the genomes of a population of living bacteria,” Nature, vol. 547, pp. 345–349, Jul. 2017.
  87. I. Shomorony and R. Heckel, “DNA-based storage: Models and fundamental limits,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 3675–3689, 2021.
  88. I. Shomorony, R. Heckel et al., “Information-theoretic foundations of DNA data storage,” Foundations and Trends® in Communications and Information Theory, vol. 19, no. 1, pp. 1–106, 2022.
  89. I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE Transactions on Information Theory, vol. 67, no. 12, pp. 7904–7913, 2021.
  90. J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 3360–3375, 2020.
  91. J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion correcting codes,” in 2020 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2020, pp. 769–774.
  92. J. Sima, N. Raviv, and J. Bruck, “Two deletion correcting codes from indicator vectors,” IEEE Transactions on Information Theory, vol. 66, no. 4, pp. 2375–2391, 2019.
  93. ——, “Robust indexing-optimal codes for DNA storage,” in 2020 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2020, pp. 717–722.
  94. ——, “On coding over sliced information,” IEEE Transactions on Information Theory, vol. 67, no. 5, pp. 2793–2807, 2021.
  95. N. J. Sloane, “On single-deletion-correcting codes,” Codes and designs, vol. 10, pp. 273–291, 2002.
  96. W. Song, K. Cai, and K. A. S. Immink, “Sequence-subset distance and coding for error control in DNA-based data storage,” IEEE Transactions on Information Theory, vol. 66, no. 10, pp. 6048–6065, 2020.
  97. W. Song, N. Polyanskii, K. Cai, and X. He, “On multiple-deletion multiple-substitution correcting codes,” in 2021 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2021, pp. 2655–2660.
  98. Y. Sun, Y. Zhang, and G. Ge, “Improved constructions of permutation and multi-permutation codes correcting a burst of stable deletions,” IEEE Transactions on Information Theory, 2023.
  99. S. Tabatabaei Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A rewritable, random-access DNA-based storage system,” Scientific Reports, vol. 5, no. 1, pp. 1–10, 2015.
  100. I. Tal, H. D. Pfister, A. Fazeli, and A. Vardy, “Polar codes for the deletion channel: Weak and strong polarization,” IEEE Transactions on Information Theory, vol. 68, no. 4, pp. 2239–2265, 2021.
  101. L. G. Tallini, N. Alqwaifly, and B. Bose, “Deletions and insertions of the symbol “0” and asymmetric/unidirectional error control codes for the l metric,” IEEE Transactions on Information Theory, vol. 69, no. 1, pp. 86–106, 2022.
  102. J. Tang and Y. Polyanskiy, “Capacity of noisy permutation channels,” IEEE Transactions on Information Theory, 2023.
  103. Y. Tang and F. Farnoud, “Error-correcting codes for noisy duplication channels,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 3452–3464, Jun. 2021.
  104. ——, “Error-correcting codes for short tandem duplication and edit errors,” IEEE Transactions on Information Theory, vol. 68, no. 2, pp. 871–880, Feb. 2021.
  105. Y. Tang, S. Wang, H. Lou, R. Gabrys, and F. Farnoud, “Low-redundancy codes for correcting multiple short-duplication and edit errors,” IEEE Transactions on Information Theory, 2023, accepted for publication.
  106. Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error detection and correction for duplication and substitution channels,” IEEE Transactions on Information Theory, vol. 66, no. 11, pp. 6908–6919, Nov. 2020.
  107. G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion (corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5, pp. 766–769, 1984.
  108. J. Ullman, “On the capabilities of codes to correct synchronization errors,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 95–105, 1967.
  109. R. R. Varshamov and G. M. Tenengolts, “Codes which correct single asymmetric errors,” Automation and Remote Control, vol. 26, no. 2, pp. 286–290, 1965.
  110. R. Venkataramanan, S. Tatikonda, and K. Ramchandran, “Achievable rates for channels with deletions and insertions,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 6990–7013, 2013.
  111. J. M. Walsh and S. Weber, “Capacity region of the permutation channel,” in 2008 46th Annual Allerton Conference on Communication, Control, and Computing.   IEEE, 2008, pp. 646–652.
  112. S. Wang, Y. Tang, R. Gabrys, and F. Farnoud, “Permutation codes for correcting a burst of at most t𝑡titalic_t deletions,” in 2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton).   IEEE, 2022, pp. 1–6.
  113. S. Wang, V. K. Vu, and V. Y. Tan, “Codes for correcting t𝑡titalic_t limited-magnitude sticky deletions,” arXiv preprint arXiv:2302.02754, 2023.
  114. H. Wei and M. Schwartz, “Improved coding over sets for DNA-based data storage,” IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 118–129, 2021.
  115. N. Weinberger and N. Merhav, “The DNA storage channel: Capacity and error probability bounds,” IEEE Transactions on Information Theory, vol. 68, no. 9, pp. 5657–5700, 2022.
  116. Wikipedia, “Edit distance,” https://en.wikipedia.org/wiki/Edit_distance.
  117. P. C. Wong, K.-k. Wong, and H. Foote, “Organic data memory using the dna approach,” Communications of the ACM, vol. 46, no. 1, pp. 95–98, 2003.
  118. S. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free DNA-based data storage,” Scientific Reports, vol. 7, no. 1, pp. 1–6, 2017.
  119. S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 3, pp. 230–248, 2015.
  120. Y. Yehezkeally, D. Bar-Lev, S. Marcovich, and E. Yaakobi, “Generalized unique reconstruction from substrings,” IEEE Transactions on Information Theory, 2023.
  121. Y. Yehezkeally and M. Schwartz, “Reconstruction codes for DNA sequences with uniform tandem-duplication errors,” IEEE Transactions on Information Theory, vol. 66, no. 5, pp. 2658–2668, May 2020.
  122. ——, “Uncertainty and reconstruction with list-decoding from uniform-tandem-duplication noise,” IEEE Transactions on Information Theory, vol. 67, no. 7, pp. 4276–4287, Jul. 2021.
  123. S. S. Yim, R. M. McBee, A. M. Song, Y. Huang, R. U. Sheth, and H. H. Wang, “Robust direct digital-to-biological data storage in living cells,” Nature Chemical Biology, vol. 17, no. 3, pp. 246–253, 2021.
  124. M. Zeraatpisheh, M. Esmaeili, and T. A. Gulliver, “Construction of tandem duplication correcting codes,” IET Communications, vol. 13, no. 15, pp. 2217–2225, 2019.
  125. ——, “Construction of duplication correcting codes,” IEEE Access, vol. 8, pp. 96 150–96 161, 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.