Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wellbeing in Future Mobility: Toward AV Policy Design to Increase Wellbeing through Interactions (2310.01669v1)

Published 2 Oct 2023 in cs.HC and cs.RO

Abstract: Recent advances in Automated vehicle (AV) technology and micromobility devices promise a transformational change in the future of mobility usage. These advances also pose challenges concerning human-AV interactions. To ensure the smooth adoption of these new mobilities, it is essential to assess how past experiences and perceptions of social interactions by people may impact the interactions with AV mobility. This research identifies and estimates an individual's wellbeing based on their actions, prior experiences, social interaction perceptions, and dyadic interactions with other road users. An online video-based user study was designed, and responses from 300 participants were collected and analyzed to investigate the impact on individual wellbeing. A machine learning model was designed to predict the change in wellbeing. An optimal policy based on the model allows informed AV actions toward its yielding behavior with other road users to enhance users' wellbeing. The findings from this study have broader implications for creating human-aware systems by creating policies that align with the individual state and contribute toward designing systems that align with an individual's state of wellbeing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. X. Sun, S. Cao, and P. Tang, “Shaping driver-vehicle interaction in autonomous vehicles: How the new in-vehicle systems match the human needs,” Applied ergonomics, vol. 90, p. 103238, 2021.
  2. S. Jorlöv, K. Bohman, and A. Larsson, “Seating positions and activities in highly automated cars–a qualitative study of future automated driving scenarios,” in International research conference on the biomechanics of impact.   IRCOBI, 2017, pp. 13–22.
  3. A. Stocker and S. Shaheen, “Shared automated vehicles: Review of business models,” Paris, International Transport Forum Discussion Paper 2017-09, 2017. [Online]. Available: http://hdl.handle.net/10419/194044
  4. J. G. Hunter, E. Ulwelling, M. Konishi, N. Michelini, A. Modali, A. Mendoza, J. Snyder, S. Mehrotra, Z. Zheng, A. R. Kumar et al., “The future of mobility-as-a-service: trust transfer across automated mobilities, from road to sidewalk,” Frontiers in psychology, vol. 14, p. 1129583, 2023.
  5. M. Nigro, M. Castiglione, F. M. Colasanti, R. De Vincentis, C. Liberto, G. Valenti, and A. Comi, “Investigating potential electric micromobility demand in the city of rome, italy,” Transportation Research Procedia, vol. 62, pp. 401–407, 2022.
  6. S. Mehrotra, J. G. Hunter, M. Konishi, K. Akash, Z. Zheng, T. Misu, A. Kumar, T. Reid, and N. Jain, “Trust in shared automated vehicles: Study on two mobility platforms,” arXiv preprint arXiv:2303.09711, 2023.
  7. F. Zhang, S. Mehrotra, and S. C. Roberts, “Driving distracted with friends: Effect of passengers and driver distraction on young drivers’ behavior,” Accident Analysis & Prevention, vol. 132, p. 105246, 2019.
  8. T. Nouvian, “In paris referendum, 89% of voters back a ban on electric scooters,” Apr 2023. [Online]. Available: https://www.nytimes.com/2023/04/03/world/europe/paris-electric-scooters-ban.html
  9. G. Angiello, “European cities and e-scooters at the crossroad,” TeMA-Journal of Land Use, Mobility and Environment, vol. 16, no. 1, pp. 233–237, 2023.
  10. M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds,” in 2014 IEEE world forum on internet of things (WF-IoT).   IEEE, 2014, pp. 241–246.
  11. J. Moody, N. Bailey, and J. Zhao, “Public perceptions of autonomous vehicle safety: An international comparison,” Safety science, vol. 121, pp. 634–650, 2020.
  12. E. Angner, “Subjective well-being,” The Journal of Socio-Economics, vol. 39, no. 3, pp. 361–368, Jun. 2010. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1053535709001590
  13. R. Dodge, A. Daly, J. Huyton, and L. Sanders, “The challenge of defining wellbeing,” International Journal of Wellbeing, vol. 2, no. 3, pp. 222–235, Aug. 2012. [Online]. Available: http://www.internationaljournalofwellbeing.org/index.php/ijow/article/view/89/238
  14. D. A. Vella-Brodrick and J. Stanley, “The significance of transport mobility in predicting well-being,” Transport Policy, vol. 29, pp. 236–242, 2013.
  15. J. Dorrian, J. Chapman, L. Bowditch, N. Balfe, and A. Naweed, “A survey of train driver schedules, sleep, wellbeing, and driving performance in australia and new zealand,” Scientific Reports, vol. 12, no. 1, p. 3956, 2022.
  16. Z. Sajedinia, K. Akash, Z. Zheng, T. Misu, M. Dong, V. Krishnamoorthy, K. Martinez, K. Sureshbabu, and G. Huang, “Investigating users’ preferences in adaptive driving styles for level 2 driving automation,” in Proceedings of the 14th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2022, pp. 162–170.
  17. R. Madigan, S. Nordhoff, C. Fox, R. E. Amini, T. Louw, M. Wilbrink, A. Schieben, and N. Merat, “Understanding interactions between automated road transport systems and other road users: A video analysis,” Transportation research part F: traffic psychology and behaviour, vol. 66, pp. 196–213, 2019.
  18. E. Games, “I. unreal engine.” [Online]. Available: https://www.unrealengine.com/
  19. S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical simulation for autonomous vehicles,” in Field and Service Robotics: Results of the 11th International Conference.   Springer, 2018, pp. 621–635.
  20. Qualtrics, “Using Attention Checks in Your Surveys May Harm Data Quality — qualtrics.com,” https://www.qualtrics.com/blog/attention-checks-and-data-quality/, [Accessed 11-May-2023].
  21. J. L. Huang, N. A. Bowling, M. Liu, and Y. Li, “Detecting insufficient effort responding with an infrequency scale: Evaluating validity and participant reactions,” Journal of Business and Psychology, vol. 30, pp. 299–311, 2015.
  22. H. Silber, J. Roßmann, and T. Gummer, “The issue of noncompliance in attention check questions: False positives in instructed response items,” Field Methods, vol. 34, no. 4, pp. 346–360, 2022.
  23. J. Radzyk, “Validation of a new social well-being questionnaire,” B.S. thesis, University of Twente, 2014.
  24. M. Friman, S. Fujii, D. Ettema, T. Gärling, and L. E. Olsson, “Psychometric analysis of the satisfaction with travel scale,” Transportation Research Part A: Policy and Practice, vol. 48, pp. 132–145, 2013.
  25. A. Kuznetsova, P. B. Brockhoff, R. H. B. Christensen et al., “Package ‘lmertest’,” R package version, vol. 2, no. 0, p. 734, 2015.
  26. B. Greiner and M. V. Levati, “Indirect reciprocity in cyclical networks: An experimental study,” Journal of Economic Psychology, vol. 26, no. 5, pp. 711–731, 2005.
  27. C. Welzel and R. Inglehart, “Agency, values, and well-being: A human development model,” Social indicators research, vol. 97, no. 1, pp. 43–63, 2010.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shashank Mehrotra (7 papers)
  2. Zahra Zahedi (10 papers)
  3. Teruhisa Misu (27 papers)
  4. Kumar Akash (17 papers)

Summary

We haven't generated a summary for this paper yet.