Reviving the Lieb-Schultz-Mattis Theorem in Open Quantum Systems (2310.01475v1)
Abstract: In closed systems, the celebrated Lieb-Schultz-Mattis (LSM) theorem states that a one-dimensional locally interacting half-integer spin chain with translation and spin rotation symmetry cannot have a non-degenerate gapped ground state. However, the applicability of this theorem is diminished when the system interacts with a bath and loses its energy conservation. In this letter, we propose that the LSM theorem can be revived in the entanglement Hamiltonian when the coupling to bath renders the system short-range correlated. Specifically, we argue that the entanglement spectrum cannot have a non-degenerate minimum, isolated by a gap from other states. We further support the results with numerical examples where a spin-$1/2$ system is coupled to another spin-$3/2$ chain serving as the bath. Compared with the original LSM theorem which primarily addresses UV--IR correspondence, our findings unveil that the UV data and topological constraints also have a pivotal role in shaping the entanglement in open quantum many-body systems.
- E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Phys. 16, 407 (1961).
- I. Affleck and E. H. Lieb, A proof of part of Haldane’s conjecture on spin chains, Lett. Math. Phys. 12, 57 (1986).
- M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions, Phys. Rev. B 69, 104431 (2004).
- P. A. Lee, An End to the Drought of Quantum Spin Liquids, Science 321, 1306 (2008).
- L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010).
- I. Affleck, Quantum spin chains and the Haldane gap, J. Phys.: Condens. Matter 1, 3047 (1989).
- X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011).
- M. P. Zaletel and A. Vishwanath, Constraints on Topological Order in Mott Insulators, Phys. Rev. Lett. 114, 077201 (2015).
- G. Y. Cho, C.-T. Hsieh, and S. Ryu, Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases, Phys. Rev. B 96, 195105 (2017).
- Y.-M. Lu, Lieb-Schultz-Mattis theorems for symmetry protected topological phases (2017), arXiv:1705.04691 .
- C.-M. Jian, Z. Bi, and C. Xu, Lieb-Schultz-Mattis theorem and its generalizations from the perspective of the symmetry-protected topological phase, Phys. Rev. B 97, 054412 (2018).
- M. A. Metlitski and R. Thorngren, Intrinsic and emergent anomalies at deconfined critical points, Phys. Rev. B 98, 085140 (2018).
- L. Fidkowski, A. Vishwanath, and M. A. Metlitski, Surface topological order and a new ’t hooft anomaly of interaction enabled 3+1d fermion spts (2018), arXiv:1804.08628 [cond-mat.str-el] .
- M. Cheng, Fermionic Lieb-Schultz-Mattis theorems and weak symmetry-protected phases, Phys. Rev. B 99, 075143 (2019).
- Y. Ogata and H. Tasaki, Lieb–Schultz–Mattis Type Theorems for Quantum Spin Chains Without Continuous Symmetry, Commun. Math. Phys. 372, 951 (2019).
- D. V. Else and R. Thorngren, Topological theory of Lieb-Schultz-Mattis theorems in quantum spin systems, Phys. Rev. B 101, 224437 (2020).
- Y.-M. Lu, Y. Ran, and M. Oshikawa, Filling-enforced constraint on the quantized Hall conductivity on a periodic lattice, Ann. Phys. 413, 168060 (2020).
- L. Gioia and C. Wang, Non-zero momentum requires long-range entanglement, Phys. Rev. X 12, 031007 (2022).
- W. Zheng, D. N. Sheng, and Y.-M. Lu, Unconventional quantum phase transitions in a one-dimensional Lieb-Schultz-Mattis system, Phys. Rev. B 105, 075147 (2022).
- H. Li and F. D. M. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Phys. Rev. Lett. 101, 010504 (2008).
- B. Buča and T. Prosen, A note on symmetry reductions of the Lindblad equation: Transport in constrained open spin chains, New J. Phys. 14, 073007 (2012).
- O. Fawzi and R. Renner, Quantum conditional mutual information and approximate markov chains, Commun. Math. Phys. 340, 575 (2015).
- K. Kato and F. G. S. L. Brandão, Quantum Approximate Markov Chains are Thermal, Commun. Math. Phys. 370, 117 (2019).
- P. Svetlichnyy and T. A. B. Kennedy, Decay of quantum conditional mutual information for purely generated finitely correlated states, J. Math. Phys. 63, 072201 (2022).
- P. Svetlichnyy, S. Mittal, and T. Kennedy, Matrix product states and the decay of quantum conditional mutual information (2022), arXiv:2211.06794 .
- D. Petz, Monotonicity of quantum relative entropy revisited, Rev. Math. Phys. 15, 79 (2003).
- The codes for our numerical calculations are available at https://github.com/chengshul/entLSM.
- D. Poilblanc, Entanglement Spectra of Quantum Heisenberg Ladders, Phys. Rev. Lett. 105, 077202 (2010).
- C. K. Majumdar and D. K. Ghosh, On Next-Nearest-Neighbor Interaction in Linear Chain. I, J. Math. Phys. 10, 1388 (1969).
- X.-L. Qi, H. Katsura, and A. W. W. Ludwig, General Relationship between the Entanglement Spectrum and the Edge State Spectrum of Topological Quantum States, Phys. Rev. Lett. 108, 196402 (2012).
- T. H. Hsieh and L. Fu, Bulk Entanglement Spectrum Reveals Quantum Criticality within a Topological State, Phys. Rev. Lett. 113, 106801 (2014).
- K. Dasbiswas, K. K. Mandadapu, and S. Vaikuntanathan, Topological localization in out-of-equilibrium dissipative systems, Proc. Natl. Acad. Sci. U.S.A. 115, E9031 (2018).
- C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, Topological framework for directional amplification in driven-dissipative cavity arrays, Nat. Commun. 11, 3149 (2020).
- L. Mao, F. Yang, and H. Zhai, Dissipation Dynamics Driven Transitions of the Density Matrix Topology (2023), arXiv:2301.04345 .
- K. Su, N. Myerson-Jain, and C. Xu, Conformal Field Theories generated by Chern Insulators under Quantum Decoherence (2023), arXiv:2305.13410 .
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).