Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry TFT for Subsystem Symmetry (2310.01474v3)

Published 2 Oct 2023 in hep-th and cond-mat.str-el

Abstract: We generalize the idea of symmetry topological field theory (SymTFT) for subsystem symmetry. We propose the 2-foliated BF theory with level $N$ in $(3+1)$d as subsystem SymTFT for subsystem $\mathbb Z_N$ symmetry in $(2+1)$d. Focusing on $N=2$, we investigate various topological boundaries. The subsystem Kramers-Wannier and Jordan-Wigner dualities can be viewed as boundary transformations of the subsystem SymTFT and are included in a larger duality web from the subsystem $SL(2,\mathbb Z_2)$ symmetry of the bulk foliated BF theory. Finally, we construct the condensation defects and twist defects of $S$-transformation in the subsystem $SL(2,\mathbb Z_2)$, from which the fusion rule of subsystem non-invertible operators can be recovered.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (94)
  1. J. Haah, “Local stabilizer codes in three dimensions without string logical operators,” Phys. Rev. A 83 no. 4, (2011) 042330, arXiv:1101.1962 [quant-ph].
  2. J. Haah, Lattice quantum codes and exotic topological phases of matter. PhD thesis, Caltech, 2013.
  3. S. Vijay, J. Haah, and L. Fu, “Fracton Topological Order, Generalized Lattice Gauge Theory and Duality,” Phys. Rev. B 94 no. 23, (2016) 235157, arXiv:1603.04442 [cond-mat.str-el].
  4. H. Ma, E. Lake, X. Chen, and M. Hermele, “Fracton topological order via coupled layers,” Phys. Rev. B 95 no. 24, (2017) 245126, arXiv:1701.00747 [cond-mat.str-el].
  5. W. Shirley, K. Slagle, Z. Wang, and X. Chen, “Fracton Models on General Three-Dimensional Manifolds,” Phys. Rev. X 8 no. 3, (2018) 031051, arXiv:1712.05892 [cond-mat.str-el].
  6. W. Shirley, K. Slagle, and X. Chen, “Fractional excitations in foliated fracton phases,” Annals Phys. 410 (2019) 167922, arXiv:1806.08625 [cond-mat.str-el].
  7. W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order in the checkerboard model,” Phys. Rev. B 99 no. 11, (2019) 115123, arXiv:1806.08633 [cond-mat.str-el].
  8. K. Slagle, “Foliated Quantum Field Theory of Fracton Order,” Phys. Rev. Lett. 126 no. 10, (2021) 101603, arXiv:2008.03852 [hep-th].
  9. K. T. Tian, E. Samperton, and Z. Wang, “Haah codes on general three-manifolds,” Annals Phys. 412 (2020) 168014, arXiv:1812.02101 [quant-ph].
  10. X. Shen, Z. Wu, L. Li, Z. Qin, and H. Yao, “Fracton Topological Order at Finite Temperature,” arXiv:2109.06887 [cond-mat.str-el].
  11. N. Seiberg and S.-H. Shao, “Exotic U⁢(1)𝑈1U(1)italic_U ( 1 ) Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum Field Theory,” SciPost Phys. 9 no. 4, (2020) 046, arXiv:2004.00015 [cond-mat.str-el].
  12. N. Seiberg and S.-H. Shao, “Exotic Symmetries, Duality, and Fractons in 2+1-Dimensional Quantum Field Theory,” SciPost Phys. 10 no. 2, (2021) 027, arXiv:2003.10466 [cond-mat.str-el].
  13. N. Seiberg and S.-H. Shao, “Exotic ℤNsubscriptℤ𝑁\mathbb{Z}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT symmetries, duality, and fractons in 3+1-dimensional quantum field theory,” SciPost Phys. 10 no. 1, (2021) 003, arXiv:2004.06115 [cond-mat.str-el].
  14. J. F. San Miguel, A. Dua, and D. J. Williamson, “Bifurcating subsystem symmetric entanglement renormalization in two dimensions,” Phys. Rev. B 103 no. 3, (2021) 035148, arXiv:2010.15124 [cond-mat.str-el].
  15. Y. You, J. Bibo, F. Pollmann, and T. L. Hughes, “Fracton Critical Point in Higher-Order Topological Phase Transition,” arXiv:2008.01746 [cond-mat.str-el].
  16. H. He, Y. Zheng, B. A. Bernevig, and N. Regnault, “Entanglement entropy from tensor network states for stabilizer codes,” Phys. Rev. B 97 no. 12, (Mar., 2018) 125102, arXiv:1710.04220 [cond-mat.str-el].
  17. H. Ma, A. T. Schmitz, S. A. Parameswaran, M. Hermele, and R. M. Nandkishore, “Topological entanglement entropy of fracton stabilizer codes,” Phys. Rev. B 97 no. 12, (Mar., 2018) 125101, arXiv:1710.01744 [cond-mat.str-el].
  18. R. M. Nandkishore and M. Hermele, “Fractons,” Ann. Rev. Condensed Matter Phys. 10 (2019) 295–313, arXiv:1803.11196 [cond-mat.str-el].
  19. M. Pretko, X. Chen, and Y. You, “Fracton Phases of Matter,” Int. J. Mod. Phys. A 35 no. 06, (2020) 2030003, arXiv:2001.01722 [cond-mat.str-el].
  20. M. Pretko, “The Fracton Gauge Principle,” Phys. Rev. B 98 no. 11, (2018) 115134, arXiv:1807.11479 [cond-mat.str-el].
  21. M. Pretko, “Subdimensional Particle Structure of Higher Rank U(1) Spin Liquids,” Phys. Rev. B 95 no. 11, (2017) 115139, arXiv:1604.05329 [cond-mat.str-el].
  22. M. Pretko, “Generalized Electromagnetism of Subdimensional Particles: A Spin Liquid Story,” Phys. Rev. B 96 no. 3, (2017) 035119, arXiv:1606.08857 [cond-mat.str-el].
  23. H. Ma, M. Hermele, and X. Chen, “Fracton topological order from the Higgs and partial-confinement mechanisms of rank-two gauge theory,” Phys. Rev. B 98 no. 3, (2018) 035111, arXiv:1802.10108 [cond-mat.str-el].
  24. D. Bulmash and M. Barkeshli, “The Higgs Mechanism in Higher-Rank Symmetric U⁢(1)𝑈1U(1)italic_U ( 1 ) Gauge Theories,” Phys. Rev. B 97 no. 23, (2018) 235112, arXiv:1802.10099 [cond-mat.str-el].
  25. K. Slagle, D. Aasen, and D. Williamson, “Foliated Field Theory and String-Membrane-Net Condensation Picture of Fracton Order,” SciPost Phys. 6 no. 4, (2019) 043, arXiv:1812.01613 [cond-mat.str-el].
  26. W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order from gauging subsystem symmetries,” SciPost Phys. 6 no. 4, (2019) 041, arXiv:1806.08679 [cond-mat.str-el].
  27. W. Shirley, K. Slagle, and X. Chen, “Twisted foliated fracton phases,” Phys. Rev. B 102 no. 11, (2020) 115103, arXiv:1907.09048 [cond-mat.str-el].
  28. S. D. Pace and X.-G. Wen, “Position-dependent excitations and UV/IR mixing in the ZN rank-2 toric code and its low-energy effective field theory,” Phys. Rev. B 106 no. 4, (2022) 045145, arXiv:2204.07111 [cond-mat.str-el].
  29. Y.-T. Oh, S. D. Pace, J. H. Han, Y. You, and H.-Y. Lee, “Aspects of ZN rank-2 gauge theory in (2+1) dimensions: Construction schemes, holonomies, and sublattice one-form symmetries,” Phys. Rev. B 107 no. 15, (2023) 155151, arXiv:2301.04706 [cond-mat.str-el].
  30. K. Ohmori and S. Shimamura, “Foliated-exotic duality in fractonic BF theories,” SciPost Phys. 14 no. 6, (2023) 164, arXiv:2210.11001 [hep-th].
  31. R. C. Spieler, “Exotic Field Theories for (Hybrid) Fracton Phases from Imposing Constraints in Foliated Field Theory,” arXiv:2304.13067 [hep-th].
  32. J. P. Ibieta-Jimenez, L. N. Q. Xavier, M. Petrucci, and P. Teotonio-Sobrinho, “Fractonlike phases from subsystem symmetries,” Phys. Rev. B 102 no. 4, (2020) 045104, arXiv:1908.07601 [cond-mat.str-el].
  33. P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “Global Dipole Symmetry, Compact Lifshitz Theory, Tensor Gauge Theory, and Fractons,” arXiv:2201.10589 [cond-mat.str-el].
  34. L. Bidussi, J. Hartong, E. Have, J. Musaeus, and S. Prohazka, “Fractons, dipole symmetries and curved spacetime,” SciPost Phys. 12 no. 6, (2022) 205, arXiv:2111.03668 [hep-th].
  35. C. D. Batista and Z. Nussinov, “Generalized Elitzur’s theorem and dimensional reduction,” Phys. Rev. B 72 (2005) 045137, arXiv:cond-mat/0410599.
  36. Z. Nussinov and G. Ortiz, “Sufficient symmetry conditions for Topological Quantum Order,” Proc. Nat. Acad. Sci. 106 (2009) 16944–16949, arXiv:cond-mat/0605316.
  37. Z. Nussinov and G. Ortiz, “A symmetry principle for topological quantum order,” Annals Phys. 324 (2009) 977–1057, arXiv:cond-mat/0702377.
  38. P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “Low-energy limit of some exotic lattice theories and UV/IR mixing,” Phys. Rev. B 104 no. 23, (2021) 235116, arXiv:2108.00020 [cond-mat.str-el].
  39. M. Qi, L. Radzihovsky, and M. Hermele, “Fracton phases via exotic higher-form symmetry-breaking,” Annals Phys. 424 (2021) 168360, arXiv:2010.02254 [cond-mat.str-el].
  40. J. Distler, A. Karch, and A. Raz, “Spontaneously broken subsystem symmetries,” JHEP 03 (2022) 016, arXiv:2110.12611 [hep-th].
  41. B. C. Rayhaun and D. J. Williamson, “Higher-Form Subsystem Symmetry Breaking: Subdimensional Criticality and Fracton Phase Transitions,” arXiv:2112.12735 [cond-mat.str-el].
  42. F. J. Burnell, T. Devakul, P. Gorantla, H. T. Lam, and S.-H. Shao, “Anomaly inflow for subsystem symmetries,” Phys. Rev. B 106 no. 8, (2022) 085113, arXiv:2110.09529 [cond-mat.str-el].
  43. C.-T. Hsieh, Y. Nakayama, and Y. Tachikawa, “Fermionic minimal models,” Phys. Rev. Lett. 126 no. 19, (2021) 195701, arXiv:2002.12283 [cond-mat.str-el].
  44. Y. Fukusumi, Y. Tachikawa, and Y. Zheng, “Fermionization and boundary states in 1+1 dimensions,” SciPost Phys. 11 (2021) 082, arXiv:2103.00746 [hep-th].
  45. H. Ebisu and M. Watanabe, “Fermionization of conformal boundary states,” Phys. Rev. B 104 no. 19, (2021) 195124, arXiv:2103.01101 [hep-th].
  46. A. Karch, D. Tong, and C. Turner, “A Web of 2d Dualities: 𝐙2subscript𝐙2{\bf Z}_{2}bold_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Gauge Fields and Arf Invariants,” SciPost Phys. 7 (2019) 007, arXiv:1902.05550 [hep-th].
  47. W. Ji, S.-H. Shao, and X.-G. Wen, “Topological Transition on the Conformal Manifold,” Phys. Rev. Res. 2 no. 3, (2020) 033317, arXiv:1909.01425 [cond-mat.str-el].
  48. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
  49. Z. Duan, Q. Jia, and S. Lee, “ℤNsubscriptℤ𝑁\mathbb{Z}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT Duality and Parafermions Revisited,” arXiv:2309.01913 [hep-th].
  50. A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, “Fermionic Symmetry Protected Topological Phases and Cobordisms,” JHEP 12 (2015) 052, arXiv:1406.7329 [cond-mat.str-el].
  51. A. Kapustin and R. Thorngren, “Fermionic SPT phases in higher dimensions and bosonization,” JHEP 10 (2017) 080, arXiv:1701.08264 [cond-mat.str-el].
  52. T. Senthil, D. T. Son, C. Wang, and C. Xu, “Duality between (2+1)⁢d21𝑑(2+1)d( 2 + 1 ) italic_d Quantum Critical Points,” Phys. Rept. 827 (2019) 1–48, arXiv:1810.05174 [cond-mat.str-el].
  53. J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, “Kramers-Wannier duality from conformal defects,” Phys. Rev. Lett. 93 (2004) 070601, arXiv:cond-mat/0404051.
  54. D. Aasen, R. S. K. Mong, and P. Fendley, “Topological Defects on the Lattice I: The Ising model,” J. Phys. A 49 no. 35, (2016) 354001, arXiv:1601.07185 [cond-mat.stat-mech].
  55. S. R. Coleman, “The Quantum Sine-Gordon Equation as the Massive Thirring Model,” Phys. Rev. D 11 (1975) 2088.
  56. F. D. M. Haldane, “'luttinger liquid theory' of one-dimensional quantum fluids. i. properties of the luttinger model and their extension to the general 1d interacting spinless fermi gas,” Journal of Physics C: Solid State Physics 14 no. 19, (Jul, 1981) 2585–2609. https://doi.org/10.1088/0022-3719/14/19/010.
  57. E. Witten, “Nonabelian Bosonization in Two-Dimensions,” Commun. Math. Phys. 92 (1984) 455–472.
  58. N. Tantivasadakarn, “Jordan-Wigner Dualities for Translation-Invariant Hamiltonians in Any Dimension: Emergent Fermions in Fracton Topological Order,” Phys. Rev. Res. 2 no. 2, (2020) 023353, arXiv:2002.11345 [cond-mat.str-el].
  59. W. Shirley, “Fractonic order and emergent fermionic gauge theory,” arXiv e-prints (Feb., 2020) arXiv:2002.12026, arXiv:2002.12026 [cond-mat.str-el].
  60. W. Cao, L. Li, M. Yamazaki, and Y. Zheng, “Subsystem Non-Invertible Symmetry Operators and Defects,” arXiv:2304.09886 [cond-mat.str-el].
  61. W. Cao, M. Yamazaki, and Y. Zheng, “Boson-fermion duality with subsystem symmetry,” Phys. Rev. B 106 no. 7, (2022) 075150, arXiv:2206.02727 [cond-mat.str-el].
  62. D. Gaiotto and J. Kulp, “Orbifold groupoids,” JHEP 02 (2021) 132, arXiv:2008.05960 [hep-th].
  63. F. Apruzzi, F. Bonetti, I. n. G. Etxebarria, S. S. Hosseini, and S. Schafer-Nameki, “Symmetry TFTs from String Theory,” arXiv:2112.02092 [hep-th].
  64. Y.-H. Lin, M. Okada, S. Seifnashri, and Y. Tachikawa, “Asymptotic density of states in 2d CFTs with non-invertible symmetries,” JHEP 03 (2023) 094, arXiv:2208.05495 [hep-th].
  65. J. Kaidi, K. Ohmori, and Y. Zheng, “Symmetry TFTs for Non-Invertible Defects,” arXiv:2209.11062 [hep-th].
  66. M. van Beest, D. S. W. Gould, S. Schafer-Nameki, and Y.-N. Wang, “Symmetry TFTs for 3d QFTs from M-theory,” arXiv:2210.03703 [hep-th].
  67. J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and Anomalies of Non-Invertible Symmetries,” arXiv:2301.07112 [hep-th].
  68. L. Bhardwaj and S. Schafer-Nameki, “Generalized Charges, Part II: Non-Invertible Symmetries and the Symmetry TFT,” arXiv:2305.17159 [hep-th].
  69. J. Chen, W. Cui, B. Haghighat, and Y.-N. Wang, “SymTFTs and Duality Defects from 6d SCFTs on 4-manifolds,” arXiv:2305.09734 [hep-th].
  70. D. S. Freed, G. W. Moore, and C. Teleman, “Topological symmetry in quantum field theory,” arXiv:2209.07471 [hep-th].
  71. A. Antinucci, F. Benini, C. Copetti, G. Galati, and G. Rizi, “Anomalies of non-invertible self-duality symmetries: fractionalization and gauging,” arXiv:2308.11707 [hep-th].
  72. C. Cordova, P.-S. Hsin, and C. Zhang, “Anomalies of Non-Invertible Symmetries in (3+1)d,” arXiv:2308.11706 [hep-th].
  73. F. Apruzzi, F. Bonetti, D. S. W. Gould, and S. Schafer-Nameki, “Aspects of Categorical Symmetries from Branes: SymTFTs and Generalized Charges,” arXiv:2306.16405 [hep-th].
  74. A. Antinucci, F. Benini, C. Copetti, G. Galati, and G. Rizi, “The holography of non-invertible self-duality symmetries,” arXiv:2210.09146 [hep-th].
  75. W. Ji and X.-G. Wen, “Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions,” Phys. Rev. Res. 2 no. 3, (2020) 033417, arXiv:1912.13492 [cond-mat.str-el].
  76. L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng, “Algebraic higher symmetry and categorical symmetry – a holographic and entanglement view of symmetry,” Phys. Rev. Res. 2 no. 4, (2020) 043086, arXiv:2005.14178 [cond-mat.str-el].
  77. S. D. Pace, “Emergent generalized symmetries in ordered phases,” arXiv:2308.05730 [cond-mat.str-el].
  78. P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “fcc lattice, checkerboards, fractons, and quantum field theory,” Phys. Rev. B 103 no. 20, (2021) 205116, arXiv:2010.16414 [cond-mat.str-el].
  79. N. Seiberg and S.-H. Shao, “Majorana chain and Ising model – (non-invertible) translations, anomalies, and emanant symmetries,” arXiv:2307.02534 [cond-mat.str-el].
  80. J. Fuchs, C. Schweigert, and A. Valentino, “Bicategories for boundary conditions and for surface defects in 3-d TFT,” Commun. Math. Phys. 321 (2013) 543–575, arXiv:1203.4568 [hep-th].
  81. K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” arXiv:2204.02407 [hep-th].
  82. S. Liu and W. Ji, “Towards Non-Invertible Anomalies from Generalized Ising Models,” arXiv:2208.09101 [cond-mat.str-el].
  83. W. B. Fontana and R. G. Pereira, “Boundary modes in the Chamon model,” SciPost Phys. 15 no. 1, (2023) 010, arXiv:2210.09867 [hep-th].
  84. Z.-X. Luo, R. C. Spieler, H.-Y. Sun, and A. Karch, “Boundary theory of the X-cube model in the continuum,” Phys. Rev. B 106 no. 19, (2022) 195102, arXiv:2206.14829 [cond-mat.str-el].
  85. P.-S. Hsin, Z.-X. Luo, and A. Malladi, “Gapped Interfaces in Fracton Models and Foliated Fields,” arXiv:2308.04489 [cond-mat.str-el].
  86. S. Pai and M. Hermele, “Fracton fusion and statistics,” Phys. Rev. B 100 no. 19, (2019) 195136, arXiv:1903.11625 [cond-mat.str-el].
  87. H. Song, N. Tantivasadakarn, W. Shirley, and M. Hermele, “Fracton Self-Statistics,” arXiv:2304.00028 [cond-mat.str-el].
  88. A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals Phys. 321 no. 1, (2006) 2–111, arXiv:cond-mat/0506438.
  89. J. Alicea and P. Fendley, “Topological phases with parafermions: theory and blueprints,” Ann. Rev. Condensed Matter Phys. 7 (2016) 119, arXiv:1504.02476 [cond-mat.str-el].
  90. Y. Yao and A. Furusaki, “Parafermionization, bosonization, and critical parafermionic theories,” JHEP 04 (2021) 285, arXiv:2012.07529 [cond-mat.str-el].
  91. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-Invertible Duality Defects in 3+1 Dimensions,” arXiv:2111.01139 [hep-th].
  92. J. M. Maldacena, G. W. Moore, and N. Seiberg, “D-brane charges in five-brane backgrounds,” JHEP 10 (2001) 005, arXiv:hep-th/0108152.
  93. T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys. Rev. D 83 (2011) 084019, arXiv:1011.5120 [hep-th].
  94. A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com