Symmetry TFT for Subsystem Symmetry (2310.01474v3)
Abstract: We generalize the idea of symmetry topological field theory (SymTFT) for subsystem symmetry. We propose the 2-foliated BF theory with level $N$ in $(3+1)$d as subsystem SymTFT for subsystem $\mathbb Z_N$ symmetry in $(2+1)$d. Focusing on $N=2$, we investigate various topological boundaries. The subsystem Kramers-Wannier and Jordan-Wigner dualities can be viewed as boundary transformations of the subsystem SymTFT and are included in a larger duality web from the subsystem $SL(2,\mathbb Z_2)$ symmetry of the bulk foliated BF theory. Finally, we construct the condensation defects and twist defects of $S$-transformation in the subsystem $SL(2,\mathbb Z_2)$, from which the fusion rule of subsystem non-invertible operators can be recovered.
- J. Haah, “Local stabilizer codes in three dimensions without string logical operators,” Phys. Rev. A 83 no. 4, (2011) 042330, arXiv:1101.1962 [quant-ph].
- J. Haah, Lattice quantum codes and exotic topological phases of matter. PhD thesis, Caltech, 2013.
- S. Vijay, J. Haah, and L. Fu, “Fracton Topological Order, Generalized Lattice Gauge Theory and Duality,” Phys. Rev. B 94 no. 23, (2016) 235157, arXiv:1603.04442 [cond-mat.str-el].
- H. Ma, E. Lake, X. Chen, and M. Hermele, “Fracton topological order via coupled layers,” Phys. Rev. B 95 no. 24, (2017) 245126, arXiv:1701.00747 [cond-mat.str-el].
- W. Shirley, K. Slagle, Z. Wang, and X. Chen, “Fracton Models on General Three-Dimensional Manifolds,” Phys. Rev. X 8 no. 3, (2018) 031051, arXiv:1712.05892 [cond-mat.str-el].
- W. Shirley, K. Slagle, and X. Chen, “Fractional excitations in foliated fracton phases,” Annals Phys. 410 (2019) 167922, arXiv:1806.08625 [cond-mat.str-el].
- W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order in the checkerboard model,” Phys. Rev. B 99 no. 11, (2019) 115123, arXiv:1806.08633 [cond-mat.str-el].
- K. Slagle, “Foliated Quantum Field Theory of Fracton Order,” Phys. Rev. Lett. 126 no. 10, (2021) 101603, arXiv:2008.03852 [hep-th].
- K. T. Tian, E. Samperton, and Z. Wang, “Haah codes on general three-manifolds,” Annals Phys. 412 (2020) 168014, arXiv:1812.02101 [quant-ph].
- X. Shen, Z. Wu, L. Li, Z. Qin, and H. Yao, “Fracton Topological Order at Finite Temperature,” arXiv:2109.06887 [cond-mat.str-el].
- N. Seiberg and S.-H. Shao, “Exotic U(1)𝑈1U(1)italic_U ( 1 ) Symmetries, Duality, and Fractons in 3+1-Dimensional Quantum Field Theory,” SciPost Phys. 9 no. 4, (2020) 046, arXiv:2004.00015 [cond-mat.str-el].
- N. Seiberg and S.-H. Shao, “Exotic Symmetries, Duality, and Fractons in 2+1-Dimensional Quantum Field Theory,” SciPost Phys. 10 no. 2, (2021) 027, arXiv:2003.10466 [cond-mat.str-el].
- N. Seiberg and S.-H. Shao, “Exotic ℤNsubscriptℤ𝑁\mathbb{Z}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT symmetries, duality, and fractons in 3+1-dimensional quantum field theory,” SciPost Phys. 10 no. 1, (2021) 003, arXiv:2004.06115 [cond-mat.str-el].
- J. F. San Miguel, A. Dua, and D. J. Williamson, “Bifurcating subsystem symmetric entanglement renormalization in two dimensions,” Phys. Rev. B 103 no. 3, (2021) 035148, arXiv:2010.15124 [cond-mat.str-el].
- Y. You, J. Bibo, F. Pollmann, and T. L. Hughes, “Fracton Critical Point in Higher-Order Topological Phase Transition,” arXiv:2008.01746 [cond-mat.str-el].
- H. He, Y. Zheng, B. A. Bernevig, and N. Regnault, “Entanglement entropy from tensor network states for stabilizer codes,” Phys. Rev. B 97 no. 12, (Mar., 2018) 125102, arXiv:1710.04220 [cond-mat.str-el].
- H. Ma, A. T. Schmitz, S. A. Parameswaran, M. Hermele, and R. M. Nandkishore, “Topological entanglement entropy of fracton stabilizer codes,” Phys. Rev. B 97 no. 12, (Mar., 2018) 125101, arXiv:1710.01744 [cond-mat.str-el].
- R. M. Nandkishore and M. Hermele, “Fractons,” Ann. Rev. Condensed Matter Phys. 10 (2019) 295–313, arXiv:1803.11196 [cond-mat.str-el].
- M. Pretko, X. Chen, and Y. You, “Fracton Phases of Matter,” Int. J. Mod. Phys. A 35 no. 06, (2020) 2030003, arXiv:2001.01722 [cond-mat.str-el].
- M. Pretko, “The Fracton Gauge Principle,” Phys. Rev. B 98 no. 11, (2018) 115134, arXiv:1807.11479 [cond-mat.str-el].
- M. Pretko, “Subdimensional Particle Structure of Higher Rank U(1) Spin Liquids,” Phys. Rev. B 95 no. 11, (2017) 115139, arXiv:1604.05329 [cond-mat.str-el].
- M. Pretko, “Generalized Electromagnetism of Subdimensional Particles: A Spin Liquid Story,” Phys. Rev. B 96 no. 3, (2017) 035119, arXiv:1606.08857 [cond-mat.str-el].
- H. Ma, M. Hermele, and X. Chen, “Fracton topological order from the Higgs and partial-confinement mechanisms of rank-two gauge theory,” Phys. Rev. B 98 no. 3, (2018) 035111, arXiv:1802.10108 [cond-mat.str-el].
- D. Bulmash and M. Barkeshli, “The Higgs Mechanism in Higher-Rank Symmetric U(1)𝑈1U(1)italic_U ( 1 ) Gauge Theories,” Phys. Rev. B 97 no. 23, (2018) 235112, arXiv:1802.10099 [cond-mat.str-el].
- K. Slagle, D. Aasen, and D. Williamson, “Foliated Field Theory and String-Membrane-Net Condensation Picture of Fracton Order,” SciPost Phys. 6 no. 4, (2019) 043, arXiv:1812.01613 [cond-mat.str-el].
- W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order from gauging subsystem symmetries,” SciPost Phys. 6 no. 4, (2019) 041, arXiv:1806.08679 [cond-mat.str-el].
- W. Shirley, K. Slagle, and X. Chen, “Twisted foliated fracton phases,” Phys. Rev. B 102 no. 11, (2020) 115103, arXiv:1907.09048 [cond-mat.str-el].
- S. D. Pace and X.-G. Wen, “Position-dependent excitations and UV/IR mixing in the ZN rank-2 toric code and its low-energy effective field theory,” Phys. Rev. B 106 no. 4, (2022) 045145, arXiv:2204.07111 [cond-mat.str-el].
- Y.-T. Oh, S. D. Pace, J. H. Han, Y. You, and H.-Y. Lee, “Aspects of ZN rank-2 gauge theory in (2+1) dimensions: Construction schemes, holonomies, and sublattice one-form symmetries,” Phys. Rev. B 107 no. 15, (2023) 155151, arXiv:2301.04706 [cond-mat.str-el].
- K. Ohmori and S. Shimamura, “Foliated-exotic duality in fractonic BF theories,” SciPost Phys. 14 no. 6, (2023) 164, arXiv:2210.11001 [hep-th].
- R. C. Spieler, “Exotic Field Theories for (Hybrid) Fracton Phases from Imposing Constraints in Foliated Field Theory,” arXiv:2304.13067 [hep-th].
- J. P. Ibieta-Jimenez, L. N. Q. Xavier, M. Petrucci, and P. Teotonio-Sobrinho, “Fractonlike phases from subsystem symmetries,” Phys. Rev. B 102 no. 4, (2020) 045104, arXiv:1908.07601 [cond-mat.str-el].
- P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “Global Dipole Symmetry, Compact Lifshitz Theory, Tensor Gauge Theory, and Fractons,” arXiv:2201.10589 [cond-mat.str-el].
- L. Bidussi, J. Hartong, E. Have, J. Musaeus, and S. Prohazka, “Fractons, dipole symmetries and curved spacetime,” SciPost Phys. 12 no. 6, (2022) 205, arXiv:2111.03668 [hep-th].
- C. D. Batista and Z. Nussinov, “Generalized Elitzur’s theorem and dimensional reduction,” Phys. Rev. B 72 (2005) 045137, arXiv:cond-mat/0410599.
- Z. Nussinov and G. Ortiz, “Sufficient symmetry conditions for Topological Quantum Order,” Proc. Nat. Acad. Sci. 106 (2009) 16944–16949, arXiv:cond-mat/0605316.
- Z. Nussinov and G. Ortiz, “A symmetry principle for topological quantum order,” Annals Phys. 324 (2009) 977–1057, arXiv:cond-mat/0702377.
- P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “Low-energy limit of some exotic lattice theories and UV/IR mixing,” Phys. Rev. B 104 no. 23, (2021) 235116, arXiv:2108.00020 [cond-mat.str-el].
- M. Qi, L. Radzihovsky, and M. Hermele, “Fracton phases via exotic higher-form symmetry-breaking,” Annals Phys. 424 (2021) 168360, arXiv:2010.02254 [cond-mat.str-el].
- J. Distler, A. Karch, and A. Raz, “Spontaneously broken subsystem symmetries,” JHEP 03 (2022) 016, arXiv:2110.12611 [hep-th].
- B. C. Rayhaun and D. J. Williamson, “Higher-Form Subsystem Symmetry Breaking: Subdimensional Criticality and Fracton Phase Transitions,” arXiv:2112.12735 [cond-mat.str-el].
- F. J. Burnell, T. Devakul, P. Gorantla, H. T. Lam, and S.-H. Shao, “Anomaly inflow for subsystem symmetries,” Phys. Rev. B 106 no. 8, (2022) 085113, arXiv:2110.09529 [cond-mat.str-el].
- C.-T. Hsieh, Y. Nakayama, and Y. Tachikawa, “Fermionic minimal models,” Phys. Rev. Lett. 126 no. 19, (2021) 195701, arXiv:2002.12283 [cond-mat.str-el].
- Y. Fukusumi, Y. Tachikawa, and Y. Zheng, “Fermionization and boundary states in 1+1 dimensions,” SciPost Phys. 11 (2021) 082, arXiv:2103.00746 [hep-th].
- H. Ebisu and M. Watanabe, “Fermionization of conformal boundary states,” Phys. Rev. B 104 no. 19, (2021) 195124, arXiv:2103.01101 [hep-th].
- A. Karch, D. Tong, and C. Turner, “A Web of 2d Dualities: 𝐙2subscript𝐙2{\bf Z}_{2}bold_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Gauge Fields and Arf Invariants,” SciPost Phys. 7 (2019) 007, arXiv:1902.05550 [hep-th].
- W. Ji, S.-H. Shao, and X.-G. Wen, “Topological Transition on the Conformal Manifold,” Phys. Rev. Res. 2 no. 3, (2020) 033317, arXiv:1909.01425 [cond-mat.str-el].
- D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
- Z. Duan, Q. Jia, and S. Lee, “ℤNsubscriptℤ𝑁\mathbb{Z}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT Duality and Parafermions Revisited,” arXiv:2309.01913 [hep-th].
- A. Kapustin, R. Thorngren, A. Turzillo, and Z. Wang, “Fermionic Symmetry Protected Topological Phases and Cobordisms,” JHEP 12 (2015) 052, arXiv:1406.7329 [cond-mat.str-el].
- A. Kapustin and R. Thorngren, “Fermionic SPT phases in higher dimensions and bosonization,” JHEP 10 (2017) 080, arXiv:1701.08264 [cond-mat.str-el].
- T. Senthil, D. T. Son, C. Wang, and C. Xu, “Duality between (2+1)d21𝑑(2+1)d( 2 + 1 ) italic_d Quantum Critical Points,” Phys. Rept. 827 (2019) 1–48, arXiv:1810.05174 [cond-mat.str-el].
- J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, “Kramers-Wannier duality from conformal defects,” Phys. Rev. Lett. 93 (2004) 070601, arXiv:cond-mat/0404051.
- D. Aasen, R. S. K. Mong, and P. Fendley, “Topological Defects on the Lattice I: The Ising model,” J. Phys. A 49 no. 35, (2016) 354001, arXiv:1601.07185 [cond-mat.stat-mech].
- S. R. Coleman, “The Quantum Sine-Gordon Equation as the Massive Thirring Model,” Phys. Rev. D 11 (1975) 2088.
- F. D. M. Haldane, “'luttinger liquid theory' of one-dimensional quantum fluids. i. properties of the luttinger model and their extension to the general 1d interacting spinless fermi gas,” Journal of Physics C: Solid State Physics 14 no. 19, (Jul, 1981) 2585–2609. https://doi.org/10.1088/0022-3719/14/19/010.
- E. Witten, “Nonabelian Bosonization in Two-Dimensions,” Commun. Math. Phys. 92 (1984) 455–472.
- N. Tantivasadakarn, “Jordan-Wigner Dualities for Translation-Invariant Hamiltonians in Any Dimension: Emergent Fermions in Fracton Topological Order,” Phys. Rev. Res. 2 no. 2, (2020) 023353, arXiv:2002.11345 [cond-mat.str-el].
- W. Shirley, “Fractonic order and emergent fermionic gauge theory,” arXiv e-prints (Feb., 2020) arXiv:2002.12026, arXiv:2002.12026 [cond-mat.str-el].
- W. Cao, L. Li, M. Yamazaki, and Y. Zheng, “Subsystem Non-Invertible Symmetry Operators and Defects,” arXiv:2304.09886 [cond-mat.str-el].
- W. Cao, M. Yamazaki, and Y. Zheng, “Boson-fermion duality with subsystem symmetry,” Phys. Rev. B 106 no. 7, (2022) 075150, arXiv:2206.02727 [cond-mat.str-el].
- D. Gaiotto and J. Kulp, “Orbifold groupoids,” JHEP 02 (2021) 132, arXiv:2008.05960 [hep-th].
- F. Apruzzi, F. Bonetti, I. n. G. Etxebarria, S. S. Hosseini, and S. Schafer-Nameki, “Symmetry TFTs from String Theory,” arXiv:2112.02092 [hep-th].
- Y.-H. Lin, M. Okada, S. Seifnashri, and Y. Tachikawa, “Asymptotic density of states in 2d CFTs with non-invertible symmetries,” JHEP 03 (2023) 094, arXiv:2208.05495 [hep-th].
- J. Kaidi, K. Ohmori, and Y. Zheng, “Symmetry TFTs for Non-Invertible Defects,” arXiv:2209.11062 [hep-th].
- M. van Beest, D. S. W. Gould, S. Schafer-Nameki, and Y.-N. Wang, “Symmetry TFTs for 3d QFTs from M-theory,” arXiv:2210.03703 [hep-th].
- J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and Anomalies of Non-Invertible Symmetries,” arXiv:2301.07112 [hep-th].
- L. Bhardwaj and S. Schafer-Nameki, “Generalized Charges, Part II: Non-Invertible Symmetries and the Symmetry TFT,” arXiv:2305.17159 [hep-th].
- J. Chen, W. Cui, B. Haghighat, and Y.-N. Wang, “SymTFTs and Duality Defects from 6d SCFTs on 4-manifolds,” arXiv:2305.09734 [hep-th].
- D. S. Freed, G. W. Moore, and C. Teleman, “Topological symmetry in quantum field theory,” arXiv:2209.07471 [hep-th].
- A. Antinucci, F. Benini, C. Copetti, G. Galati, and G. Rizi, “Anomalies of non-invertible self-duality symmetries: fractionalization and gauging,” arXiv:2308.11707 [hep-th].
- C. Cordova, P.-S. Hsin, and C. Zhang, “Anomalies of Non-Invertible Symmetries in (3+1)d,” arXiv:2308.11706 [hep-th].
- F. Apruzzi, F. Bonetti, D. S. W. Gould, and S. Schafer-Nameki, “Aspects of Categorical Symmetries from Branes: SymTFTs and Generalized Charges,” arXiv:2306.16405 [hep-th].
- A. Antinucci, F. Benini, C. Copetti, G. Galati, and G. Rizi, “The holography of non-invertible self-duality symmetries,” arXiv:2210.09146 [hep-th].
- W. Ji and X.-G. Wen, “Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions,” Phys. Rev. Res. 2 no. 3, (2020) 033417, arXiv:1912.13492 [cond-mat.str-el].
- L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng, “Algebraic higher symmetry and categorical symmetry – a holographic and entanglement view of symmetry,” Phys. Rev. Res. 2 no. 4, (2020) 043086, arXiv:2005.14178 [cond-mat.str-el].
- S. D. Pace, “Emergent generalized symmetries in ordered phases,” arXiv:2308.05730 [cond-mat.str-el].
- P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao, “fcc lattice, checkerboards, fractons, and quantum field theory,” Phys. Rev. B 103 no. 20, (2021) 205116, arXiv:2010.16414 [cond-mat.str-el].
- N. Seiberg and S.-H. Shao, “Majorana chain and Ising model – (non-invertible) translations, anomalies, and emanant symmetries,” arXiv:2307.02534 [cond-mat.str-el].
- J. Fuchs, C. Schweigert, and A. Valentino, “Bicategories for boundary conditions and for surface defects in 3-d TFT,” Commun. Math. Phys. 321 (2013) 543–575, arXiv:1203.4568 [hep-th].
- K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” arXiv:2204.02407 [hep-th].
- S. Liu and W. Ji, “Towards Non-Invertible Anomalies from Generalized Ising Models,” arXiv:2208.09101 [cond-mat.str-el].
- W. B. Fontana and R. G. Pereira, “Boundary modes in the Chamon model,” SciPost Phys. 15 no. 1, (2023) 010, arXiv:2210.09867 [hep-th].
- Z.-X. Luo, R. C. Spieler, H.-Y. Sun, and A. Karch, “Boundary theory of the X-cube model in the continuum,” Phys. Rev. B 106 no. 19, (2022) 195102, arXiv:2206.14829 [cond-mat.str-el].
- P.-S. Hsin, Z.-X. Luo, and A. Malladi, “Gapped Interfaces in Fracton Models and Foliated Fields,” arXiv:2308.04489 [cond-mat.str-el].
- S. Pai and M. Hermele, “Fracton fusion and statistics,” Phys. Rev. B 100 no. 19, (2019) 195136, arXiv:1903.11625 [cond-mat.str-el].
- H. Song, N. Tantivasadakarn, W. Shirley, and M. Hermele, “Fracton Self-Statistics,” arXiv:2304.00028 [cond-mat.str-el].
- A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals Phys. 321 no. 1, (2006) 2–111, arXiv:cond-mat/0506438.
- J. Alicea and P. Fendley, “Topological phases with parafermions: theory and blueprints,” Ann. Rev. Condensed Matter Phys. 7 (2016) 119, arXiv:1504.02476 [cond-mat.str-el].
- Y. Yao and A. Furusaki, “Parafermionization, bosonization, and critical parafermionic theories,” JHEP 04 (2021) 285, arXiv:2012.07529 [cond-mat.str-el].
- Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-Invertible Duality Defects in 3+1 Dimensions,” arXiv:2111.01139 [hep-th].
- J. M. Maldacena, G. W. Moore, and N. Seiberg, “D-brane charges in five-brane backgrounds,” JHEP 10 (2001) 005, arXiv:hep-th/0108152.
- T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys. Rev. D 83 (2011) 084019, arXiv:1011.5120 [hep-th].
- A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].