Papers
Topics
Authors
Recent
2000 character limit reached

Separately Convex and Separately Continuous Preferences: On Results of Schmeidler, Shafer, and Bergstrom-Parks-Rader

Published 1 Oct 2023 in econ.TH | (2310.00531v1)

Abstract: We provide necessary and sufficient conditions for a correspondence taking values in a finite-dimensional Euclidean space to be open so as to revisit the pioneering work of Schmeidler (1969), Shafer (1974), Shafer-Sonnenschein (1975) and Bergstrom-Rader-Parks (1976) to answer several questions they and their followers left open. We introduce the notion of separate convexity for a correspondence and use it to relate to classical notions of continuity while giving salience to the notion of separateness as in the interplay of separate continuity and separate convexity of binary relations. As such, we provide a consolidation of the convexity-continuity postulates from a broad inter-disciplinary perspective and comment on how the qualified notions proposed here have implications of substantive interest for choice theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.