AI-Dentify: Deep learning for proximal caries detection on bitewing x-ray -- HUNT4 Oral Health Study (2310.00354v3)
Abstract: Background: Dental caries diagnosis requires the manual inspection of diagnostic bitewing images of the patient, followed by a visual inspection and probing of the identified dental pieces with potential lesions. Yet the use of artificial intelligence, and in particular deep-learning, has the potential to aid in the diagnosis by providing a quick and informative analysis of the bitewing images. Methods: A dataset of 13,887 bitewings from the HUNT4 Oral Health Study were annotated individually by six different experts, and used to train three different object detection deep-learning architectures: RetinaNet (ResNet50), YOLOv5 (M size), and EfficientDet (D0 and D1 sizes). A consensus dataset of 197 images, annotated jointly by the same six dentist, was used for evaluation. A five-fold cross validation scheme was used to evaluate the performance of the AI models. Results: he trained models show an increase in average precision and F1-score, and decrease of false negative rate, with respect to the dental clinicians. When compared against the dental clinicians, the YOLOv5 model shows the largest improvement, reporting 0.647 mean average precision, 0.548 mean F1-score, and 0.149 mean false negative rate. Whereas the best annotators on each of these metrics reported 0.299, 0.495, and 0.164 respectively. Conclusion: Deep-learning models have shown the potential to assist dental professionals in the diagnosis of caries. Yet, the task remains challenging due to the artifacts natural to the bitewing images.
- Organisation, W. H. Global oral health status report: towards universal health coverage for oral health by 2030 (World Health Organization, Geneva, 2022). [2] Schwendicke, F., Tzschoppe, M. & Paris, S. Accuracy of dental radiographs for caries detection. Evidence-Based Dentistry 17, 43–43 (2016). URL http://www.nature.com/articles/6401166. [3] Schwendicke, F. & Göstemeyer, G. Conventional bitewing radiography. Clinical Dentistry Reviewed 4, 22 (2020). URL https://doi.org/10.1007/s41894-020-00086-8. [4] Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Tzschoppe, M. & Paris, S. Accuracy of dental radiographs for caries detection. Evidence-Based Dentistry 17, 43–43 (2016). URL http://www.nature.com/articles/6401166. [3] Schwendicke, F. & Göstemeyer, G. Conventional bitewing radiography. Clinical Dentistry Reviewed 4, 22 (2020). URL https://doi.org/10.1007/s41894-020-00086-8. [4] Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F. & Göstemeyer, G. Conventional bitewing radiography. Clinical Dentistry Reviewed 4, 22 (2020). URL https://doi.org/10.1007/s41894-020-00086-8. [4] Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Accuracy of dental radiographs for caries detection. Evidence-Based Dentistry 17, 43–43 (2016). URL http://www.nature.com/articles/6401166. [3] Schwendicke, F. & Göstemeyer, G. Conventional bitewing radiography. Clinical Dentistry Reviewed 4, 22 (2020). URL https://doi.org/10.1007/s41894-020-00086-8. [4] Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F. & Göstemeyer, G. Conventional bitewing radiography. Clinical Dentistry Reviewed 4, 22 (2020). URL https://doi.org/10.1007/s41894-020-00086-8. [4] Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Conventional bitewing radiography. Clinical Dentistry Reviewed 4, 22 (2020). URL https://doi.org/10.1007/s41894-020-00086-8. [4] Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Devito, K. L., de Souza Barbosa, F. & Filho, W. N. F. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 106, 879–884 (2008). URL https://pubmed.ncbi.nlm.nih.gov/18718785/. [5] Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Berdouses, E. D. et al. A computer-aided automated methodology for the detection and classification of occlusal caries from photographic color images. Computers in biology and medicine 62, 119–135 (2015). URL https://pubmed.ncbi.nlm.nih.gov/25932969/. [6] Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Singh, P. & Sehgal, P. Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Automated caries detection based on Radon transformation and DCT. 8th International Conference on Computing, Communications and Networking Technologies, ICCCNT 2017 (2017). [7] Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hwang, J.-J., Jung, Y.-H., Cho, B.-H. & Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- An overview of deep learning in the field of dentistry. Imaging Science in Dentistry 49, 1 (2019). URL https://synapse.koreamed.org/DOIx.php?id=10.5624/isd.2019.49.1.1. [8] Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Prados-Privado, M., García Villalón, J., Martínez-Martínez, C. H., Ivorra, C. & Prados-Frutos, J. C. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. Journal of Clinical Medicine 9, 3579 (2020). [9] Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Schwendicke, F., Golla, T., Dreher, M. & Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry 91, 103226 (2019). [10] Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. Journal of Signal Processing Systems 90, 87–97 (2018). URL https://link.springer.com/article/10.1007/s11265-016-1214-6. [11] Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Srivastava, M. M., Kumar, P., Pradhan, L. & Varadarajan, S. Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Detection of Tooth caries in Bitewing Radiographs using Deep Learning. ArXiv (2017). URL http://arxiv.org/abs/1711.07312. [12] Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, J. H., Kim, D. H., Jeong, S. N. & Choi, S. H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry 77, 106–111 (2018). [13] Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Lee, S. et al. Deep learning for early dental caries detection in bitewing radiographs. Scientific Reports 11, 16807 (2021). [14] Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Cantu, A. G. et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry 100, 103425 (2020). URL https://www.sciencedirect.com/science/article/pii/S0300571220301718. [15] Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Park, E. Y., Cho, H., Kang, S., Jeong, S. & Kim, E.-K. Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22, 573 (2022). URL https://doi.org/10.1186/s12903-022-02589-1. [16] Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Godfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Deep Learning (MIT Press, 2016). URL http://www.deeplearningbook.org/. [17] Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Krokstad, S. et al. Cohort Profile: The HUNT Study, Norway. International Journal of Epidemiology 42, 968–977 (2012). [18] Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Stødle, I. H., Verket, A., Høvik, H., Sen, A. & Koldsland, O. C. Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Prevalence of periodontitis based on the 2017 classification in a norwegian population: The hunt study. Journal of Clinical Periodontology 48, 1189–1199 (2021). [19] Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Rødseth, S. C., Høvik, H., Schuller, A. A. & Skudutyte-Rysstad, R. Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Dental caries in a norwegian adult population, the hunt4 oral health study; prevalence, distribution and 45-year trends. Acta Odontologica Scandinavica 81, 202–210 (2022). [20] Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Smistad, E., Østvik, A. & Lovstakken, L. Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Annotation Web - An open-source web-based annotation tool for ultrasound images 1–4 (2021). URL https://ieeexplore.ieee.org/document/9593336/. [21] Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Westberg, T. E., Døving, L. M. & Bjørg, A. Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Kliniske rutiner- Kariologi (2010). URL https://www.odont.uio.no/iko/om/organisasjon/fagavd/kariologi-gerodontologi/rutiner-metoder/. [22] Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Hansson, H. H. & Espelid, I. Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Kan vi stole på kariesregistreringen? Validering av to visuelle indekser for registrering av okklusalkaries basert på ekstraherte tenner. Nor Tannlegeforen Tid 676–682 (2012). URL https://www.tannlegetidende.no/journal/2012/9/Tidende09-164/Kan_vi_stole_p{̊a}_kariesregistreringen. [23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Focal Loss for Dense Object Detection. ArXiv (2017). URL http://arxiv.org/abs/1708.02002. [24] Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Jocher, G. et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). URL https://doi.org/10.5281/zenodo.7347926#.Y70zngpFrcJ.mendeley. [25] Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 10778–10787 (2020). [26] Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Georgieva, V. M., Mihaylova, A. D. & Petrov, P. P. An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- An application of dental X-ray image enhancement. 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications, TELSIKS 2017 - Proceeding 2017-Octob, 447–450 (2017). [27] Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Davison, A. C. & Hinkley, D. V. Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Boostrap methods and their applications (Cambridge University Press, New York, 1997). [28] Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279. Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L. & Da Silva, E. A. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, Vol. 10, Page 279 10, 279 (2021). URL https://www.mdpi.com/2079-9292/10/3/279/htmhttps://www.mdpi.com/2079-9292/10/3/279.
- Javier Pérez de Frutos (3 papers)
- Ragnhild Holden Helland (4 papers)
- Shreya Desai (1 paper)
- Line Cathrine Nymoen (1 paper)
- Thomas Langø (6 papers)
- Theodor Remman (1 paper)
- Abhijit Sen (59 papers)