Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalar fields around a rotating loop quantum gravity black hole: Waveform, quasi-normal modes and superradiance (2310.00253v2)

Published 30 Sep 2023 in gr-qc and hep-th

Abstract: The rotating loop quantum gravity black hole is a newly proposed non-singular black hole, which eliminates spacetime singularities when a regularization parameter is introduced through loop quantum corrections. This parameter is expected to give rise to observable effects. In this paper, the dynamical behavior of a scalar field near a rotating loop quantum gravity black hole is investigated. Given a small initial perturbation, we obtain the waveform of massless scalar fields evolving over time. By analyzing the waveform, we find that the regularization parameter only affects the damping oscillation of waveform, but not the initial outburst and late-time tail stages. This behavior is characterized by quasi-normal modes. Under scalar field perturbations, the loop quantum black holes remain stable. Moreover, we calculate the quasi-normal modes of massive scalar fields by three numerical methods, which are the Prony, WKB, and shooting methods, respectively. Our results indicate that the real part of quasi-normal modes depends only on the regularization parameter, while the imaginary part does not only on the regularization parameter but also on the angular momentum. Finally, we study the amplification effect of rotating black holes, i.e., the superradiance. Our analyses indicate the existence of stronger superradiance around loop quantum gravity black holes compared to Kerr ones.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. S. W. Hawking. Black hole explosions. Nature, 248:30–31, 1974. doi:10.1038/248030a0.
  2. Roger Penrose. Gravitational collapse: The role of general relativity. Nuovo Cimento Rivista Serie, 1:252, 1969. doi:10.1103/PhysRevLett.14.57.
  3. Regular Black Holes: A Short Topic Review. Int. J. Theor. Phys., 62(9):202, 2023. arXiv:2303.11696, doi:10.1007/s10773-023-05454-1.
  4. James Bardeen. Non-singular general relativistic gravitational collapse. In Proceedings of the 5th International Conference on Gravitation and the Theory of Relativity, page 87, 1968.
  5. Renormalization group improved black hole space-times. Phys. Rev. D, 62:043008, 2000. arXiv:hep-th/0002196, doi:10.1103/PhysRevD.62.043008.
  6. Black holes within Asymptotic Safety. Int. J. Mod. Phys. A, 29(8):1430011, 2014. arXiv:1401.4452, doi:10.1142/S0217751X14300117.
  7. Regular Black Hole Interior Spacetime Supported by Three-Form Field. Eur. Phys. J. C, 81(4):278, 2021. arXiv:2005.13260, doi:10.1140/epjc/s10052-021-09080-1.
  8. Leonardo Modesto. Loop quantum black hole. Class. Quant. Grav., 23:5587–5602, 2006. arXiv:gr-qc/0509078, doi:10.1088/0264-9381/23/18/006.
  9. Loop quantization of the Schwarzschild black hole. Phys. Rev. Lett., 110(21):211301, 2013. arXiv:1302.5265, doi:10.1103/PhysRevLett.110.211301.
  10. (b,v)-type variables for black to white hole transitions in effective loop quantum gravity. Phys. Lett. B, 819:136390, 2021. arXiv:1911.12646, doi:10.1016/j.physletb.2021.136390.
  11. Mass and Horizon Dirac Observables in Effective Models of Quantum Black-to-White Hole Transition. Class. Quant. Grav., 38(9):095002, 2021. arXiv:1912.00774, doi:10.1088/1361-6382/abe05d.
  12. Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys. Rev. Lett., 126(18):181301, 2021. arXiv:2012.08785, doi:10.1103/PhysRevLett.126.181301.
  13. Tests of Loop Quantum Gravity from the Event Horizon Telescope Results of Sgr A*. Astrophys. J., 944(2):149, 2023. arXiv:2209.12584, doi:10.3847/1538-4357/acb334.
  14. R. A. Konoplya and A. Zhidenko. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys., 83:793–836, 2011. arXiv:1102.4014, doi:10.1103/RevModPhys.83.793.
  15. Quasi-normal modes of stars and black holes. Living Reviews in Relativity, 2(1):2, 1999. arXiv:gr-qc/9909058, doi:10.12942/lrr-1999-2.
  16. Zhen Li. Scalar perturbation around rotating regular black hole: Superradiance instability and quasinormal modes. Phys. Rev. D, 107(4):044013, 2023. arXiv:2210.14062, doi:10.1103/PhysRevD.107.044013.
  17. Scalar perturbations around rotating regular black holes and wormholes: Quasinormal modes, ergoregion instability, and superradiance. Phys. Rev. D, 105(12):124051, 2022. arXiv:2201.01650, doi:10.1103/PhysRevD.105.124051.
  18. Superradiance: New Frontiers in Black Hole Physics. Lect. Notes Phys., 906:pp.1–237, 2015. arXiv:1501.06570, doi:10.1007/978-3-319-19000-6.
  19. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Physical Review D, 94(8):084031, 2016. URL: https://doi.org/10.1103/PhysRevD.94.084031, arXiv:1608.08637, doi:10.1103/PhysRevD.94.084031.
  20. Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures. Nature Astronomy, 5(8):749–760, 2021. doi:10.1038/s41550-021-01398-w.
  21. Postmerger Gravitational-Wave Signatures of Phase Transitions in Binary Mergers. Phys. Rev. Lett., 124(17):171103, 2020. arXiv:1912.09340, doi:10.1103/PhysRevLett.124.171103.
  22. Floating orbits, superradiant scattering and the black-hole bomb. Nature, 238(5362):211–212, 1972. doi:10.1038/238211a0.
  23. J. D. Bekenstein. Extraction of energy and charge from a black hole. Physical Review D, 7(8):949–953, 1973. doi:10.1103/PhysRevD.7.949.
  24. Y. B. Zeldovich. Amplification of cylindrical electromagnetic waves reflected from a rotating body. Soviet Journal of Experimental and Theoretical Physics Letters, 14(3):180–181, 1971.
  25. Amplification of electromagnetic and gravitational waves scattered by a rotating ”black hole”. Soviet Physics JETP, 38(1):1–5, 1973.
  26. William E. East. Massive Boson Superradiant Instability of Black Holes: Nonlinear Growth, Saturation, and Gravitational Radiation. Phys. Rev. Lett., 121(13):131104, 2018. arXiv:1807.00043, doi:10.1103/PhysRevLett.121.131104.
  27. Edward W Leaver. An analytic representation for the quasi-normal modes of kerr black holes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 402(1823):285–298, 1985. doi:10.1098/rspa.1985.0119.
  28. Mustapha Azreg-Aïnou. Generating rotating regular black hole solutions without complexification. Phys. Rev. D, 90(6):064041, 2014. arXiv:1405.2569, doi:10.1103/PhysRevD.90.064041.
  29. Scalar fields in black hole spacetimes. Physical Review D, 96(2):024020, 2017. arXiv:arXiv:1704.05096, doi:10.1103/PhysRevD.96.024020.
  30. Object picture of scalar field perturbation on kerr black hole in scalar-einstein-gauss-bonnet theory. Physical Review D, 102(12):124056, 2020. arXiv:2007.10348, doi:10.1103/PhysRevD.102.124056.
  31. Anıl Zenginoglu. Hyperboloidal foliations and scri-fixing. Classical Quantum Gravity, 25(14):145002, 2008. arXiv:0805.4895, doi:10.1088/0264-9381/25/14/145002.
  32. Anıl Zenginoglu. A hyperboloidal study of tail decay rates for scalar and yang-mills fields. Classical Quantum Gravity, 25(17):175013, 2008. arXiv:0806.1642, doi:10.1088/0264-9381/25/17/175013.
  33. Anıl Zenginoglu. Hyperboloidal evolution with the einstein equations. Classical Quantum Gravity, 25(19):195025, 2008. arXiv:0807.4170, doi:10.1088/0264-9381/25/19/195025.
  34. Gravitational perturbations of schwarzschild spacetime at null infinity and the hyperboloidal initial value problem. Classical Quantum Gravity, 26(3):035009, 2009. arXiv:0809.4726, doi:10.1088/0264-9381/26/3/035009.
  35. Spacelike matching to null infinity. Physical Review D, 80(2):024044, 2009. doi:10.1103/PhysRevD.80.024044.
  36. Anıl Zenginoglu. Asymptotics of black hole perturbations. Classical Quantum Gravity, 27(4):045015, 2010. doi:10.1088/0264-9381/27/4/045015.
  37. Anıl Zenginoglu. Hyperboloidal layers for hyperbolic equations on unbounded domains. Journal of Computational Physics, 230(6):2286, 2011. doi:10.1016/j.jcp.2010.12.007.
  38. Anıl Zenginoglu. A geometric framework for black hole perturbations. Physical Review D, 83(12):127502, 2011. doi:10.1103/PhysRevD.83.127502.
  39. A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime. Class. Quant. Grav., 31(24):245004, 2014. arXiv:1406.5983, doi:10.1088/0264-9381/31/24/245004.
  40. Mining information from binary black hole mergers: A Comparison of estimation methods for complex exponentials in noise. Phys. Rev. D, 75:124017, 2007. arXiv:gr-qc/0701086, doi:10.1103/PhysRevD.75.124017.
  41. S. Chandrasekhar and Steven L. Detweiler. The quasi-normal modes of the Schwarzschild black hole. Proc. Roy. Soc. Lond. A, 344:441–452, 1975. doi:10.1098/rspa.1975.0112.
  42. Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity. Phys. Rev. D, 81:124021, 2010. arXiv:1004.4007, doi:10.1103/PhysRevD.81.124021.
  43. Sai Iyer. BLACK HOLE NORMAL MODES: A WKB APPROACH. 2. SCHWARZSCHILD BLACK HOLES. Phys. Rev. D, 35:3632, 1987. doi:10.1103/PhysRevD.35.3632.
  44. BLACK HOLE NORMAL MODES: A WKB APPROACH. 4. KERR BLACK HOLES. Phys. Rev. D, 41:374–382, 1990. doi:10.1103/PhysRevD.41.374.
  45. Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quant. Grav., 36:155002, 2019. arXiv:1904.10333, doi:10.1088/1361-6382/ab2e25.
  46. R. A. Konoplya. Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D, 68:024018, 2003. arXiv:gr-qc/0303052, doi:10.1103/PhysRevD.68.024018.
  47. Edward Seidel. A comment on the eigenvalues of spin-weighted spheroidal functions. Classical and Quantum Gravity, 6(7):1057, 1989. doi:10.1088/0264-9381/6/7/012.
  48. RA Konoplya and AV Zhidenko. Stability and quasinormal modes of the massive scalar field around kerr black holes. Physical Review D, 73(12):124040, 2006. arXiv:gr-qc/0605013, doi:10.1103/PhysRevD.73.124040.
  49. Destroying the event horizon of a nonsingular rotating quantum-corrected black hole. JHEP, 04:066, 2022. arXiv:2201.03381, doi:10.1007/JHEP04(2022)066.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com