Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Source Inference Attacks: Beyond Membership Inference Attacks in Federated Learning (2310.00222v1)

Published 30 Sep 2023 in cs.CR

Abstract: Federated learning (FL) is a popular approach to facilitate privacy-aware machine learning since it allows multiple clients to collaboratively train a global model without granting others access to their private data. It is, however, known that FL can be vulnerable to membership inference attacks (MIAs), where the training records of the global model can be distinguished from the testing records. Surprisingly, research focusing on the investigation of the source inference problem appears to be lacking. We also observe that identifying a training record's source client can result in privacy breaches extending beyond MIAs. For example, consider an FL application where multiple hospitals jointly train a COVID-19 diagnosis model, membership inference attackers can identify the medical records that have been used for training, and any additional identification of the source hospital can result the patient from the particular hospital more prone to discrimination. Seeking to contribute to the literature gap, we take the first step to investigate source privacy in FL. Specifically, we propose a new inference attack (hereafter referred to as source inference attack -- SIA), designed to facilitate an honest-but-curious server to identify the training record's source client. The proposed SIAs leverage the Bayesian theorem to allow the server to implement the attack in a non-intrusive manner without deviating from the defined FL protocol. We then evaluate SIAs in three different FL frameworks to show that in existing FL frameworks, the clients sharing gradients, model parameters, or predictions on a public dataset will leak such source information to the server. We also conduct extensive experiments on various datasets to investigate the key factors in an SIA. The experimental results validate the efficacy of the proposed SIAs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Hongsheng Hu (27 papers)
  2. Xuyun Zhang (21 papers)
  3. Zoran Salcic (4 papers)
  4. Lichao Sun (186 papers)
  5. Kim-Kwang Raymond Choo (59 papers)
  6. Gillian Dobbie (21 papers)
Citations (9)