Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NASU -- Novel Actuating Screw Unit: Origami-inspired Screw-based Propulsion on Mobile Ground Robots (2310.00184v3)

Published 29 Sep 2023 in cs.RO

Abstract: Screw-based locomotion is a robust method of locomotion across a wide range of media including water, sand, and gravel. A challenge with screws is their significant number of impactful design parameters that affect locomotion performance. One crucial parameter is the angle of attack (also called the lead angle), which has been shown to significantly impact the performance of screw propellers in terms of traveling velocity, force produced, degree of slip, and sinkage. As a result, the optimal design choice may vary significantly depending on application and mission objectives. In this work, we present the Novel Actuating Screw Unit (NASU). It is the first screw-based propulsion design that enables dynamic reconfiguration of the angle of attack for optimized locomotion across multiple media and use cases. The design is inspired by the kresling unit, a mechanism from origami robotics, and the angle of attack is adjusted with a linear actuator, while the entire unit is spun on its axis to generate propulsion. NASU is integrated into a mobile test bed and experiments are conducted in various media including gravel, grass, and sand. Our experiment results indicate a trade-off between locomotive efficiency and velocity exists in regards to angle of attack, and the proposed design is a promising direction for reconfigurable screws by allowing control to optimize for efficiency or velocity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. H. E. Rossell and L. B. Chapman, Principles of Naval Architecture. Published by the Society of Naval Architects and Marine Engineers, 1962.
  2. T. Wells, “Improvement in the manner of constructing and of propelling steamboats, denominated the buoyant spiral propeller,” U.S. Patent 2400, Dec. 1841.
  3. M. Neumeyer and B. Jones, “The marsh screw amphibian,” Journal of Terramechanics, vol. 2, no. 4, pp. 83–88, 1965.
  4. W. Fales, D. W. Amick, and B. G. Schreiner, “The riverine utility craft (ruc),” Journal of Terramechanics, vol. 8, no. 3, pp. 23–38, 1972.
  5. J. Freeberg, A study of omnidirectional quad-screw-drive configurations for all-terrain locomotion. PhD thesis, University of South Florida, Oct. 2010.
  6. J. Villacrés, M. Barczyk, and M. Lipsett, “Literature review on archimedean screw propulsion for off-road vehicles,” Journal of Terramechanics, vol. 108, pp. 47–57, 2023.
  7. R. Li, B. Wu, K. Di, A. Angelova, R. E. Arvidson, I.-C. Lee, M. Maimone, L. H. Matthies, L. Richer, R. Sullivan, and et al., “Characterization of traverse slippage experienced by spirit rover on husband hill at gusev crater,” Journal of Geophysical Research, vol. 113, no. E12, 2008.
  8. K. Nagaoka, M. Otsuki, T. Kubota, and S. Tanaka, “Terramechanics-based propulsive characteristics of mobile robot driven by Archimedean screw mechanism on soft soil,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4946–4951, Oct. 2010.
  9. D. Osiński and K. Szykiedans, “Small Remotely Operated Screw-Propelled Vehicle,” in Progress in Automation, Robotics and Measuring Techniques (R. Szewczyk, C. Zieliński, and M. Kaliczyńska, eds.), Advances in Intelligent Systems and Computing, (Cham), pp. 191–200, Springer International Publishing, 2015.
  10. J. T. Freeberg, A Study of Omnidirectional Quad-Screw-Drive Configurations for All-Terrain Locomotion. PhD thesis, University of South Florida, 2010.
  11. J. H. Lugo, V. Ramadoss, M. Zoppi, and R. Molfino, “Conceptual design of tetrad-screw propelled omnidirectional all-terrain mobile robot,” in 2nd International Conference on Control and Robotics Engineering, pp. 13–17, IEEE, 2017.
  12. D. A. Schreiber, F. Richter, A. Bilan, P. V. Gavrilov, H. M. Lam, C. H. Price, K. C. Carpenter, and M. C. Yip, “Arcsnake: an archimedes’ screw-propelled, reconfigurable serpentine robot for complex environments,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7029–7034, IEEE, 2020.
  13. F. Richter, P. V. Gavrilov, H. M. Lam, A. Degani, and M. C. Yip, “Arcsnake: Reconfigurable snakelike robot with archimedean screw propulsion for multidomain mobility,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 797–809, 2021.
  14. J. Lim, Amphibious Locomotion with a Screw-propelled Snake-like Robot. MSc Thesis, University of California, San Diego, 2023.
  15. R. Thakker, M. Paton, M. P. Strub, M. Swan, G. Daddi, R. Royce, P. Tosi, M. Gildner, T. Vaquero, M. Veismann, et al., “Eels: Towards autonomous mobility in extreme terrain with a versatile snake robot with resilience to exteroception failures,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9886–9893, IEEE, 2023.
  16. M. Gildner, N. Georgiev, E. Ambrose, T. Pailevanian, A. Archanian, H. Melikyan, D. Loret de Mola Lemus, M. Paton, R. Thakker, and M. Ono, “To boldly go where no robots have gone before–part 2: The versatile mobility of the eels robot for robustly exploring unknown environments,” in AIAA SCITECH 2024 Forum, p. 1965, 2024.
  17. ASCE Library, 2021.
  18. A. M. Group and B. Cole, “Inquiry into amphibious screw traction,” Proceedings of the Institution of Mechanical Engineers, vol. 175, no. 1, pp. 919–940, 1961.
  19. H. Dugoff and I. R. Ehlich, “Model tests of bouyant screw rotor configurations,” Journal of Terramechanics, vol. 4, no. 3, pp. 9–22, 1967.
  20. L. S. Novelino, Q. Ze, S. Wu, G. H. Paulino, and R. Zhao, “Untethered control of functional origami microrobots with distributed actuation,” Proceedings of the National Academy of Sciences, vol. 117, no. 39, pp. 24096–24101, 2020.
  21. Y. Miyazawa, C.-W. Chen, R. Chaunsali, T. S. Gormley, G. Yin, G. Theocharis, and J. Yang, “Topological state transfer in kresling origami,” Comunication Materials, 2022.
  22. Q. Ze, S. Wu, J. Nishikaea, J. Dai, Y. Sun, S. Leanza, C. Zemelka, L. S. Novelino, G. H. Paulino, and R. R. Zhao, “Soft robotic origami crawler,” Science advances, vol. 8, no. 13, p. eabm7834, 2022.
  23. N. Kidambi and K. W. Wang, “Dynamics of kresling origami deployment,” Phys. Rev. E, vol. 101, p. 063003, Jun 2020.
  24. J. Lim, C. Joyce, E. Peiros, M. Yeoh, P. V. Gavrilov, S. G. Wickenhiser, D. A. Schreiber, F. Richter, and M. C. Yip, “Mobility analysis of screw-based locomotion and propulsion in various media.,” ICRA2023, 2023.
  25. A. Thoesen, S. Ramirez, and H. Marvi, “Screw-powered propulsion in granular media: An experimental and computational study,” 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.
  26. A. Thoesen, S. Ramirez, and H. Marvi, “Screw‐generated forces in granular media: Experimental, computational, and analytical comparison,” AIChE Journal, vol. 65, no. 3, p. 894–903, 2019.
  27. W. H. Mayfield, Development of a Novel Amphibious Locomotion System for Use in Intra-Luminal Surgical Procedures. PhD thesis, University of Leeds, Aug. 2015.
  28. C. Seo, K. Lee, D. Son, and T. Seo, “Robust design of a screw-based crawling robot on a granular surface,” IEEE Access, vol. 9, p. 103988–103995, 2021.
  29. S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman, “A review of morphing aircraft,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 9, pp. 823–877, 2011.
  30. D. D. Chin, L. Y. Matloff, A. K. Stowers, E. R. Tucci, and D. Lentink, “Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates,” Journal of The Royal Society Interface, vol. 14, no. 131, p. 20170240, 2017.
  31. J. Dorfling, FEASIBILITY OF MORPHING AIRCRAFT PROPELLER BLADES. PhD thesis, Wichita State University, 2008.
  32. K. Ye and J. Ji, “A Novel Morphing Propeller System Inspired by Origami-Based Structure,” Journal of Mechanisms and Robotics, vol. 15, p. 011006, 04 2022.
  33. F. Chen, L. Liu, X. Lan, Q. Li, J. Leng, and Y. Liu, “The study on the morphing composite propeller for marine vehicle. part i: Design and numerical analysis,” Composite Structures, vol. 168, pp. 746–757, 2017.
  34. F. Chen, L. Liu, X. Lan, Q. Li, L. Jinsong, and Y. Liu, “The study on the morphing composite propeller for marine vehicle. part i: Design and numerical analysis,” Composite Structures, vol. 168, 02 2017.

Summary

We haven't generated a summary for this paper yet.