Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Network Preference Dynamics using Lattice Theory (2310.00179v2)

Published 29 Sep 2023 in cs.MA

Abstract: Preferences, fundamental in all forms of strategic behavior and collective decision-making, in their raw form, are an abstract ordering on a set of alternatives. Agents, we assume, revise their preferences as they gain more information about other agents. Exploiting the ordered algebraic structure of preferences, we introduce a message-passing algorithm for heterogeneous agents distributed over a network to update their preferences based on aggregations of the preferences of their neighbors in a graph. We demonstrate the existence of equilibrium points of the resulting global dynamical system of local preference updates and provide a sufficient condition for trajectories to converge to equilibria: stable preferences. Finally, we present numerical simulations demonstrating our preliminary results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. M. C. Munger, Choosing in groups: Analytical politics revisited. Cambridge University Press, 2015.
  2. M. J. Osborne and A. Rubinstein, A course in game theory. MIT press, 1994.
  3. A. Gibbard, “Manipulation of voting schemes: a general result,” Econometrica: journal of the Econometric Society, pp. 587–601, 1973.
  4. M. A. Satterthwaite, “Strategy-proofness and arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare functions,” Journal of economic theory, vol. 10, no. 2, pp. 187–217, 1975.
  5. Yale university press, 2012.
  6. A. F. Beardon, J. C. Candeal, G. Herden, E. Induráin, and G. B. Mehta, “The non-existence of a utility function and the structure of non-representable preference relations,” Journal of Mathematical Economics, vol. 37, no. 1, pp. 17–38, 2002.
  7. K. Eliaz and E. Ok, “Indifference or indecisiveness? choice-theoretic foundations of incomplete preferences,” Games and Economic Behavior, vol. 56, pp. 61–86, 2006.
  8. J. C. Harsanyi, “Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility,” Journal of political economy, vol. 63, no. 4, pp. 309–321, 1955.
  9. G. J. Stigler and G. S. Becker, “De gustibus non est disputandum,” The american economic review, vol. 67, no. 2, pp. 76–90, 1977.
  10. S. O. Hansson, “Changes in preferences,” Theory and Decision, vol. 38, no. 1, pp. 1–28, 1995.
  11. H. Riess and R. Ghrist, “Diffusion of information on networked lattices by gossip,” in 2022 IEEE Conference on Decision and Control (CDC), (Cancun, Mexico), 2022.
  12. H. Riess, M. Munger, and M. M. Zavlanos, “Max-plus synchronization in decentralized trading systems,” arXiv preprint arXiv:2304.00210, 2023.
  13. F. Karacal and R. Mesiar, “Aggregation functions on bounded lattices,” International Journal of General Systems, vol. 46, no. 1, pp. 37–51, 2017.
  14. C. P. Chambers and A. D. Miller, “Rules for aggregating information,” Social Choice and Welfare, vol. 36, no. 1, pp. 75–82, 2011.
  15. J.-P. Barthélemy and M. F. Janowitz, “A formal theory of consensus,” SIAM Journal on Discrete Mathematics, vol. 4, no. 3, pp. 305–322, 1991.
  16. B. Jean-Pierre, L. Bruno, and M. Bernard, “On the use of ordered sets in problems of comparison and consensus of classifications,” Journal of Classification, 1986.
  17. H. Attiya, M. Herlihy, and O. Rachman, “Atomic snapshots using lattice agreement,” Distributed Computing, vol. 8, pp. 121–132, 1995.
  18. H. Noorazar, “Recent advances in opinion propagation dynamics: A 2020 survey,” The European Physical Journal Plus, vol. 135, pp. 1–20, 2020.
  19. M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical association, vol. 69, no. 345, pp. 118–121, 1974.
  20. J. Hansen and R. Ghrist, “Opinion dynamics on discourse sheaves,” SIAM Journal on Applied Mathematics, vol. 81, no. 5, pp. 2033–2060, 2021.
  21. J. Ghaderi and R. Srikant, “Opinion dynamics in social networks with stubborn agents: Equilibrium and convergence rate,” Automatica, vol. 50, no. 12, pp. 3209–3215, 2014.
  22. R. Hegselmann and U. Krause, “Opinion dynamics and bounded confidence intervals,” Journal of Artificial Societies and Social Simulation, vol. 5, no. 3, 2002.
  23. V. D. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis, “On krause’s multi-agent consensus model with state-dependent connectivity,” IEEE Transactions on Automatic Control, 2009.
  24. M. Hayhoe, F. Alajaji, and B. Gharesifard, “A polya contagion model for networks,” IEEE Transactions on Control of Network Systems, vol. 5, no. 4, pp. 1998–2010, 2017.
  25. American Mathematical Soc., 1940.
  26. Springer, 2008.
  27. A. Dudzik and P. Veličković, “Graph neural networks are dynamic programmers,” arXiv preprint arXiv:2203.15544, 2022.
  28. A. Dudzik, T. von Glehn, R. Pascanu, and P. Veličković, “Asynchronous algorithmic alignment with cocycles,” arXiv preprint arXiv:2306.15632, 2023.
  29. S. A. Tailor, F. Opolka, P. Lio, and N. D. Lane, “Do we need anisotropic graph neural networks?,” in International Conference on Learning Representations, 2021.
  30. University of Michigan press, 1965.
  31. A. Tarski, “On the calculus of relations,” The Journal of Symbolic Logic, vol. 6, no. 3, pp. 73–89, 1941.
  32. B. Knaster, “Un theoreme sur les functions d’ensembles,” Ann. Soc. Polon. Math., vol. 6, pp. 133–134, 1928.
  33. A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,” Pacific journal of Mathematics, vol. 5, no. 2, pp. 285–309, 1955.
  34. P. Cousot and R. Cousot, “Constructive versions of tarski’s fixed point theorems,” Pacific journal of Mathematics, vol. 82, no. 1, pp. 43–57, 1979.
  35. M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30, no. 1/2, pp. 81–93, 1938.
  36. J. H. Kim and V. H. Vu, “Generating random regular graphs,” in Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pp. 213–222, 2003.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.