Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Model Brushless Electric Motors for the Design of Lightweight Robotic Systems (2310.00080v1)

Published 29 Sep 2023 in cs.RO

Abstract: A key step in the development of lightweight, high performance robotic systems is the modeling and selection of permanent magnet brushless direct current (BLDC) electric motors. Typical modeling analyses are completed a priori, and provide insight for properly sizing a motor for an application, specifying the required operating voltage and current, as well as assessing the thermal response and other design attributes (e.g.transmission ratio). However, to perform these modeling analyses, proper information about the motor's characteristics are needed, which are often obtained from manufacturer datasheets. Through our own experience and communications with manufacturers, we have noticed a lack of clarity and standardization in modeling BLDC motors, compounded by vague or inconsistent terminology used in motor datasheets. The purpose of this tutorial is to concisely describe the governing equations for BLDC motor analyses used in the design process, as well as highlight potential errors that can arise from incorrect usage. We present a power-invariant conversion from phase and line-to-line reference frames to a familiar q-axis DC motor representation, which provides a ``brushed'' analogue of a three phase BLDC motor that is convenient for analysis and design. We highlight potential errors including incorrect calculations of winding resistive heat loss, improper estimation of motor torque via the motor's torque constant, and incorrect estimation of the required bus voltage or resulting angular velocity limitations. A unified and condensed set of governing equations is available for designers in the Appendix. The intent of this work is to provide a consolidated mathematical foundation for modeling BLDC motors that addresses existing confusion and fosters high performance designs of future robotic systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. S. B. Ozturk, W. C. Alexander, and H. A. Toliyat, “Direct torque control of four-switch brushless dc motor with non-sinusoidal back emf,” IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 263–271, 2010.
  2. U. Neethu and V. R. Jisha, “Speed control of brushless dc motor: A comparative study,” in 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2012, pp. 1–5.
  3. U. H. Lee, C.-W. Pan, and E. J. Rouse, “Empirical characterization of a high-performance exterior-rotor type brushless dc motor and drive,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 8018–8025.
  4. S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, “Design principles for highly efficient quadrupeds and implementation on the mit cheetah robot,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 3307–3312.
  5. S. Seok, A. Wang, M. Y. M. Chuah, D. J. Hyun, J. Lee, D. M. Otten, J. H. Lang, and S. Kim, “Design principles for energy-efficient legged locomotion and implementation on the mit cheetah robot,” Ieee/asme transactions on mechatronics, vol. 20, no. 3, pp. 1117–1129, 2014.
  6. G. Kenneally, A. De, and D. E. Koditschek, “Design principles for a family of direct-drive legged robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 900–907, 2016.
  7. Y. Ding and H.-W. Park, “Design and experimental implementation of a quasi-direct-drive leg for optimized jumping,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 300–305.
  8. S. Rezazadeh, A. Abate, R. L. Hatton, and J. W. Hurst, “Robot leg design: A constructive framework,” IEEE Access, vol. 6, pp. 54 369–54 387, 2018.
  9. B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for pushing the limits of dynamic quadruped control,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 6295–6301.
  10. B. Laschowski, J. McPhee, and J. Andrysek, “Lower-limb prostheses and exoskeletons with energy regeneration: Mechatronic design and optimization review,” Journal of Mechanisms and Robotics, vol. 11, no. 4, 2019.
  11. R. R. Torrealba and E. D. Fonseca-Rojas, “Toward the development of knee prostheses: Review of current active devices,” Applied Mechanics Reviews, vol. 71, no. 3, 2019.
  12. S. V. Sarkisian, M. K. Ishmael, G. R. Hunt, and T. Lenzi, “Design, development, and validation of a self-aligning mechanism for high-torque powered knee exoskeletons,” IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 2, pp. 248–259, 2020.
  13. T. Elery, S. Rezazadeh, C. Nesler, and R. D. Gregg, “Design and validation of a powered knee–ankle prosthesis with high-torque, low-impedance actuators,” IEEE Transactions on Robotics, 2020.
  14. S. Yu, T.-H. Huang, X. Yang, C. Jiao, J. Yang, Y. Chen, J. Yi, and H. Su, “Quasi-direct drive actuation for a lightweight hip exoskeleton with high backdrivability and high bandwidth,” IEEE/ASME Transactions on Mechatronics, 2020.
  15. A. F. Azocar, L. M. Mooney, J.-F. Duval, A. M. Simon, L. J. Hargrove, and E. J. Rouse, “Design and clinical implementation of an open-source bionic leg,” Nature biomedical engineering, vol. 4, no. 10, pp. 941–953, 2020.
  16. D. Li and R. Qu, “Sinusoidal back-emf of vernier permanent magnet machines,” in 2012 15th International Conference on Electrical Machines and Systems (ICEMS), 2012, pp. 1–6.
  17. S. Lee, T. Lemley, and G. Keohane, “A comparison study of the commutation methods for the three-phase permanent magnet brushless dc motor,” in Electrical Manufacturing Technical Conference 2009: Electrical Manufacturing and Coil Winding Expo, 2009, pp. 49–55.
  18. P. Pillay and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless dc motors for servo drives,” IEEE Transactions on industry applications, vol. 27, no. 5, pp. 986–996, 1991.
  19. C. J. O’Rourke, M. M. Qasim, M. R. Overlin, and J. L. Kirtley, “A geometric interpretation of reference frames and transformations: dq0, clarke, and park,” IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2070–2083, 2019.
  20. J. R. Mevey, “Sensorless field oriented control of brushless permanent magnet synchronous motors,” Master’s Thesis, 2009.
  21. R. Parsons, “How to estimate the torque of a bldc (pmsm) electric motor using only its kv and current draw,” Dec 2018. [Online]. Available: https://things-in-motion.blogspot.com/search?q=salient
  22. A. De, A. Stewart-Height, and D. E. Koditschek, “Task-based control and design of a bldc actuator for robotics,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2393–2400, 2019.
  23. J. Cros and P. Viarouge, “Synthesis of high performance pm motors with concentrated windings,” IEEE transactions on energy conversion, vol. 17, no. 2, pp. 248–253, 2002.
  24. C. J. O’Rourke, M. M. Qasim, M. R. Overlin, and J. L. J. Kirtley, “A geometric interpretation of reference frames and transformations: dq0, clarke, and park.” IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2070 – 2083, 2019.
  25. M. Koteich, T. Le Moing, A. Janot, and F. Defay, “A real-time observer for uav’s brushless motors,” in 2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics.   IEEE, 2013, pp. 1–5.
  26. M. Musák and M. Stulrajter, “Novel methods for parameters investigation of pm synchronous motors,” Acta Technica Corviniensis-Bulletin of Engineering, vol. 6, no. 1, p. 51, 2013.
  27. T.-Y. Lee, J.-Y. Song, J. Kim, Y.-J. Kim, S.-Y. Jung, and J.-M. Je, “Phase advance control to reduce torque ripple of brush-less dc motor according to winding connection, wye and delta,” Journal of Electrical Engineering and Technology, vol. 9, no. 6, pp. 2201–2208, 2014.
  28. S. Niapour, G. Garjan, M. Shafiei, M. R. Feyzi, S. Danyali, and M. Bahrami Kouhshahi, “Review of permanent-magnet brushless dc motor basic drives based on analysis and simulation study,” International Review of Electrical Engineering, vol. 9, no. 5, pp. 930–957, 2014.
  29. S. Meier, “Theoretical design of surface-mounted permanent magnet motors with field-weakening capability,” Master, Departement of Electrical Engineering, Royal Institute of Technology Stockholm, Stockholm, 2002.
  30. V. Bobek, “Pmsm electrical parameters measurement,” Freescale Semiconductor, vol. 7, no. 8, p. 13, 2013.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com