Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Trajectory Prediction in Dynamic Multi-Agent Environment by Dropping Waypoints (2309.17338v2)

Published 29 Sep 2023 in cs.RO, cs.AI, cs.CV, and cs.LG

Abstract: The inherently diverse and uncertain nature of trajectories presents a formidable challenge in accurately modeling them. Motion prediction systems must effectively learn spatial and temporal information from the past to forecast the future trajectories of the agent. Many existing methods learn temporal motion via separate components within stacked models to capture temporal features. Furthermore, prediction methods often operate under the assumption that observed trajectory waypoint sequences are complete, disregarding scenarios where missing values may occur, which can influence their performance. Moreover, these models may be biased toward particular waypoint sequences when making predictions. We propose a novel approach called Temporal Waypoint Dropping (TWD) that explicitly incorporates temporal dependencies during the training of a trajectory prediction model. By stochastically dropping waypoints from past observed trajectories, the model is forced to learn the underlying temporal representation from the remaining waypoints, resulting in an improved model. Incorporating stochastic temporal waypoint dropping into the model learning process significantly enhances its performance in scenarios with missing values. Experimental results demonstrate our approach's substantial improvement in trajectory prediction capabilities. Our approach can complement existing trajectory prediction methods to improve their prediction accuracy. We evaluate our proposed approach on three datasets: NBA Sports VU, ETH-UCY, and TrajNet++.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “Sgcn: Sparse graph convolution network for pedestrian trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8994–9003.
  2. A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 14 424–14 432.
  3. J. Sekhon and C. Fleming, “Scan: A spatial context attentive network for joint multi-agent intent prediction,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 7, 2021, pp. 6119–6127.
  4. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable trajectories with generative adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2255–2264.
  5. W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional recurrent imputation for time series,” Advances in neural information processing systems, vol. 31, 2018.
  6. S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv preprint arXiv:1803.01271, 2018.
  7. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  8. C. Xu, M. Li, Z. Ni, Y. Zhang, and S. Chen, “Groupnet: Multiscale hypergraph neural networks for trajectory prediction with relational reasoning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 6498–6507.
  9. P. Lv, W. Wang, Y. Wang, Y. Zhang, M. Xu, and C. Xu, “Ssagcn: social soft attention graph convolution network for pedestrian trajectory prediction,” IEEE transactions on neural networks and learning systems, 2023.
  10. R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou, F. Heide, and C. Pal, “Latent variable sequential set transformers for joint multi-agent motion prediction,” in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=Dup_dDqkZC5
  11. S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE 12th international conference on computer vision.   IEEE, 2009, pp. 261–268.
  12. A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” in Computer graphics forum, vol. 26, no. 3.   Wiley Online Library, 2007, pp. 655–664.
  13. E. Zhan, S. Zheng, Y. Yue, L. Sha, and P. Lucey, “Generating multi-agent trajectories using programmatic weak supervision,” arXiv preprint arXiv:1803.07612, 2018.
  14. P. Kothari, S. Kreiss, and A. Alahi, “Human trajectory forecasting in crowds: A deep learning perspective,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–15, 2021.
  15. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  16. T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16.   Springer, 2020, pp. 683–700.
  17. S. H. Park, G. Lee, J. Seo, M. Bhat, M. Kang, J. Francis, A. Jadhav, P. P. Liang, and L.-P. Morency, “Diverse and admissible trajectory forecasting through multimodal context understanding,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16.   Springer, 2020, pp. 282–298.
  18. M. Lee, S. S. Sohn, S. Moon, S. Yoon, M. Kapadia, and V. Pavlovic, “Muse-vae: multi-scale vae for environment-aware long term trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2221–2230.
  19. C. Xu, Y. Wei, B. Tang, S. Yin, Y. Zhang, and S. Chen, “Dynamic-group-aware networks for multi-agent trajectory prediction with relational reasoning,” arXiv preprint arXiv:2206.13114, 2022.
  20. K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and A. Gaidon, “It is not the journey but the destination: Endpoint conditioned trajectory prediction,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16.   Springer, 2020, pp. 759–776.
  21. A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and S. Savarese, “Sophie: An attentive gan for predicting paths compliant to social and physical constraints,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), no. CONF, 2019.
  22. Y. Hu, S. Chen, Y. Zhang, and X. Gu, “Collaborative motion prediction via neural motion message passing,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 6319–6328.
  23. V. Kosaraju, A. Sadeghian, R. Martín-Martín, I. Reid, H. Rezatofighi, and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  24. W. Mao, C. Xu, Q. Zhu, S. Chen, and Y. Wang, “Leapfrog diffusion model for stochastic trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5517–5526.
  25. L. Shi, L. Wang, C. Long, S. Zhou, W. Tang, N. Zheng, and G. Hua, “Representing multimodal behaviors with mean location for pedestrian trajectory prediction,” IEEE transactions on pattern analysis and machine intelligence, 2023.
  26. T. Gu, G. Chen, J. Li, C. Lin, Y. Rao, J. Zhou, and J. Lu, “Stochastic trajectory prediction via motion indeterminacy diffusion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 113–17 122.
  27. Y. Yuan, X. Weng, Y. Ou, and K. M. Kitani, “Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9813–9823.
  28. Z. Zhou, J. Wang, Y.-H. Li, and Y.-K. Huang, “Query-centric trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 17 863–17 873.
  29. C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph transformer networks for pedestrian trajectory prediction,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16.   Springer, 2020, pp. 507–523.
  30. L. F. Chiara, P. Coscia, S. Das, S. Calderara, R. Cucchiara, and L. Ballan, “Goal-driven self-attentive recurrent networks for trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2518–2527.
  31. I. Bae and H.-G. Jeon, “A set of control points conditioned pedestrian trajectory prediction,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 5, 2023, pp. 6155–6165.
  32. X. Chen, F. Luo, F. Zhao, and Q. Ye, “Goal-guided and interaction-aware state refinement graph attention network for multi-agent trajectory prediction,” IEEE Robotics and Automation Letters, vol. 9, no. 1, pp. 57–64, 2023.
  33. T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural relational inference for interacting systems,” in Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.   PMLR, 10–15 Jul 2018, pp. 2688–2697. [Online]. Available: https://proceedings.mlr.press/v80/kipf18a.html
  34. C. Xu, Y. Wei, B. Tang, S. Yin, Y. Zhang, S. Chen, and Y. Wang, “Dynamic-group-aware networks for multi-agent trajectory prediction with relational reasoning,” Neural Networks, 2023.
  35. R. Wang, Z. Hu, X. Song, and W. Li, “Trajectory distribution aware graph convolutional network for trajectory prediction considering spatio-temporal interactions and scene information,” IEEE Transactions on Knowledge and Data Engineering, 2023.
  36. M. Mendieta and H. Tabkhi, “Carpe posterum: A convolutional approach for real-time pedestrian path prediction,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3, 2021, pp. 2346–2354.
  37. D. I. S.-T. L. R. to Explain Human Actions, “Discovering intrinsic spatial-temporal logic rules to explain human actions,” Advances in Neural Information Processing Systems, 2023.
  38. J. Sun, Y. Li, L. Chai, and C. Lu, “Modality exploration, retrieval and adaptation for trajectory prediction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  39. C. Wong, B. Xia, Q. Peng, W. Yuan, and X. You, “Msn: multi-style network for trajectory prediction,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  40. X. Shi, H. Zhang, W. Yuan, and R. Shibasaki, “Metatraj: meta-learning for cross-scene cross-object trajectory prediction,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  41. M. Ye, J. Xu, X. Xu, T. Wang, T. Cao, and Q. Chen, “Bootstrap motion forecasting with self-consistent constraints,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 8504–8514.
  42. Y. Zhu, D. Ren, M. Fan, D. Qian, X. Li, and H. Xia, “Robust trajectory forecasting for multiple intelligent agents in dynamic scene,” arXiv preprint arXiv:2005.13133, 2020.
  43. G. Aydemir, A. K. Akan, and F. Güney, “Adapt: Efficient multi-agent trajectory prediction with adaptation,” arXiv preprint arXiv:2307.14187, 2023.
  44. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 961–971.
  45. Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling spatial-temporal interactions for human trajectory prediction,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6272–6281.
  46. C. Zhang, Z. Ni, and C. Berger, “Spatial-temporal-spectral lstm: A transferable model for pedestrian trajectory prediction,” IEEE Transactions on Intelligent Vehicles, 2023.
  47. A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention in human crowds,” in 2018 IEEE international Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 4601–4607.
  48. B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2375–2384.
  49. X. Zhong, X. Yan, Z. Yang, W. Huang, K. Jiang, R. W. Liu, and Z. Wang, “Visual exposes you: Pedestrian trajectory prediction meets visual intention,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  50. X. Chen, H. Zhang, Y. Hu, J. Liang, and H. Wang, “Vnagt: Variational non-autoregressive graph transformer network for multi-agent trajectory prediction,” IEEE Transactions on Vehicular Technology, 2023.
  51. C. Yang and Z. Pei, “Long-short term spatio-temporal aggregation for trajectory prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 4, pp. 4114–4126, 2023.
  52. Y. Li, C. Xie, R. Liang, J. Du, J. Zhou, and X. Li, “A synchronous bi-directional framework with temporally dependent interaction modeling for pedestrian trajectory prediction,” IEEE Transactions on Network Science and Engineering, 2023.
  53. J. Sun, Y. Li, L. Chai, and C. Lu, “Stimulus verification is a universal and effective sampler in multi-modal human trajectory prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 014–22 023.
  54. B. Yang, G. Yan, P. Wang, C.-Y. Chan, X. Song, and Y. Chen, “A novel graph-based trajectory predictor with pseudo-oracle,” IEEE transactions on neural networks and learning systems, vol. 33, no. 12, pp. 7064–7078, 2021.
  55. N. Shafiee, T. Padir, and E. Elhamifar, “Introvert: Human trajectory prediction via conditional 3d attention,” in Proceedings of the IEEE/cvf Conference on Computer Vision and Pattern recognition, 2021, pp. 16 815–16 825.
  56. B. Pang, T. Zhao, X. Xie, and Y. N. Wu, “Trajectory prediction with latent belief energy-based model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11 814–11 824.
  57. K. Mangalam, Y. An, H. Girase, and J. Malik, “From goals, waypoints & paths to long term human trajectory forecasting,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 15 233–15 242.
  58. W. Zhu, Y. Liu, M. Zhang, and Y. Yi, “Reciprocal consistency prediction network for multi-step human trajectory prediction,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  59. C. Yang, H. Pan, W. Sun, and H. Gao, “Social self-attention generative adversarial networks for human trajectory prediction,” IEEE Transactions on Artificial Intelligence, 2023.
  60. H. Cheng, W. Liao, M. Y. Yang, B. Rosenhahn, and M. Sester, “Amenet: Attentive maps encoder network for trajectory prediction,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 172, pp. 253–266, 2021.
  61. S. Saadatnejad, M. Bahari, P. Khorsandi, M. Saneian, S.-M. Moosavi-Dezfooli, and A. Alahi, “Are socially-aware trajectory prediction models really socially-aware?” Transportation research part C: emerging technologies, vol. 141, p. 103705, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.