Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Amplitude Estimation for Probabilistic Methods in Power Systems (2309.17299v1)

Published 29 Sep 2023 in quant-ph, cs.SY, and eess.SY

Abstract: This paper introduces quantum computing methods for Monte Carlo simulations in power systems which are expected to be exponentially faster than their classical computing counterparts. Monte Carlo simulations is a fundamental method, widely used in power systems to estimate key parameters of unknown probability distributions, such as the mean value, the standard deviation, or the value at risk. It is, however, very computationally intensive. Approaches based on Quantum Amplitude Estimation can offer a quadratic speedup, requiring orders of magnitude less samples to achieve the same accuracy. This paper explains three Quantum Amplitude Estimation methods to replace the Classical Monte Carlo method, namely the Iterative Quantum Amplitude Estimation (IQAE), Maximum Likelihood Amplitude Estimation (MLAE), and Faster Amplitude Estimation (FAE), and compares their performance for three different types of probability distributions for power systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estimation,” AMS Contemporary Mathematics Series, vol. 305, no. 4, June 2000.
  2. D. Grinko, J. Gacon, C. Zoufal, and S. Woerner, “Iterative quantum amplitude estimation,” npj Quantum Information, vol. 7, no. 1, March 2021.
  3. Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, and N. Yamamoto, “Amplitude estimation without phase estimation,” Quantum Information Processing, vol. 19, January 2020.
  4. K. Nakaji, “Faster amplitude estimation,” Quantum Information and Computation, vol. 20, no. 13&14, pp. 1109–1123, November 2020.
  5. K. Yu, H. Lim, P. Rao, and D. Jin, “Comparison of amplitude estimation algorithms by implementation,” 2020, (unpublished).
  6. E. Jong, “Quantum computing for probabilistic power flow in power systems,” Master’s thesis, Technical University of Denmark, Lyngby, July 2023.
  7. Qiskit, “An open-source framework for Quantum Computing,” Online. [Online]. Available: https://qiskit.org/
  8. S. Woerner and D. Egger, “Quantum risk analysis,” npj Quantum Information, vol. 5, 12 2019.
  9. D. J. Egger, R. García Gutiérrez, J. C. Mestre, and S. Woerner, “Credit risk analysis using quantum computers,” IEEE Transactions on Computers, vol. 70, no. 12, pp. 2136–2145, 2021.
  10. U. H. Ramadhani, M. Shepero, J. Munkhammar, J. Widén, and N. Etherden, “Review of probabilistic load flow approaches for power distribution systems with photovoltaic generation and electric vehicle charging,” International Journal of Electrical Power & Energy Systems, vol. 120, p. 106003, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061519341730
  11. M. Aien, M. Fotuhi-Firuzabad, and F. Aminifar, “Probabilistic load flow in correlated uncertain environment using unscented transformation,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2233–2241, 2012.
  12. N. Bhat, B. R. Prusty, and D. Jena, “Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging demand,” Frontiers in Energy, vol. 11, pp. 184–196, 05 2017.
  13. S.-E. Gryning, R. Floors, A. Peña, E. Batchvarova, and B. Brümmer, “Weibull wind-speed distribution parameters derived from a combination of wind-lidar and tall-mast measurements over land, coastal and marine sites,” Boundary-Layer Meteorology, vol. 159, no. 2, pp. 329–348, 2016, .
  14. Z. Shu and M. Jesson, “Estimation of weibull parameters for wind energy analysis across the uk,” Journal of Renewable and Sustainable Energy, vol. 13, p. 023303, 03 2021.
  15. W. Sun, M. Zamani, H.-T. Zhang, and Y. Li, “Probabilistic optimal power flow considering correlation of wind farms via markov chain quasi-monte carlo sampling,” 2018.
  16. Z. Ren, W. Li, R. Billinton, and W. Yan, “Probabilistic power flow analysis based on the stochastic response surface method,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2307–2315, 2016.

Summary

We haven't generated a summary for this paper yet.