Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Representation Learning for Prediction of Temporal Event Sets in the Continuous Time Domain (2309.17009v1)

Published 29 Sep 2023 in cs.LG

Abstract: Temporal Point Processes (TPP) play an important role in predicting or forecasting events. Although these problems have been studied extensively, predicting multiple simultaneously occurring events can be challenging. For instance, more often than not, a patient gets admitted to a hospital with multiple conditions at a time. Similarly people buy more than one stock and multiple news breaks out at the same time. Moreover, these events do not occur at discrete time intervals, and forecasting event sets in the continuous time domain remains an open problem. Naive approaches for extending the existing TPP models for solving this problem lead to dealing with an exponentially large number of events or ignoring set dependencies among events. In this work, we propose a scalable and efficient approach based on TPPs to solve this problem. Our proposed approach incorporates contextual event embeddings, temporal information, and domain features to model the temporal event sets. We demonstrate the effectiveness of our approach through extensive experiments on multiple datasets, showing that our model outperforms existing methods in terms of prediction metrics and computational efficiency. To the best of our knowledge, this is the first work that solves the problem of predicting event set intensities in the continuous time domain by using TPPs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Parag Dutta (5 papers)
  2. Kawin Mayilvaghanan (2 papers)
  3. Pratyaksha Sinha (1 paper)
  4. Ambedkar Dukkipati (76 papers)

Summary

We haven't generated a summary for this paper yet.