Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Variational Spike-and-Slab Approach for Group Variable Selection (2309.16855v1)

Published 28 Sep 2023 in stat.ME, math.ST, and stat.TH

Abstract: We introduce a class of generic spike-and-slab priors for high-dimensional linear regression with grouped variables and present a Coordinate-ascent Variational Inference (CAVI) algorithm for obtaining an optimal variational Bayes approximation. Using parameter expansion for a specific, yet comprehensive, family of slab distributions, we obtain a further gain in computational efficiency. The method can be easily extended to fitting additive models. Theoretically, we present general conditions on the generic spike-and-slab priors that enable us to derive the contraction rates for both the true posterior and the VB posterior for linear regression and additive models, of which some previous theoretical results can be viewed as special cases. Our simulation studies and real data application demonstrate that the proposed method is superior to existing methods in both variable selection and parameter estimation. Our algorithm is implemented in the R package GVSSB.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com