Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning for Bayesian Optimization on Heterogeneous Search Spaces (2309.16597v2)

Published 28 Sep 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Bayesian optimization (BO) is a popular black-box function optimization method, which makes sequential decisions based on a Bayesian model, typically a Gaussian process (GP), of the function. To ensure the quality of the model, transfer learning approaches have been developed to automatically design GP priors by learning from observations on "training" functions. These training functions are typically required to have the same domain as the "test" function (black-box function to be optimized). In this paper, we introduce MPHD, a model pre-training method on heterogeneous domains, which uses a neural net mapping from domain-specific contexts to specifications of hierarchical GPs. MPHD can be seamlessly integrated with BO to transfer knowledge across heterogeneous search spaces. Our theoretical and empirical results demonstrate the validity of MPHD and its superior performance on challenging black-box function optimization tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhou Fan (101 papers)
  2. Xinran Han (2 papers)
  3. Zi Wang (120 papers)
Citations (5)
X Twitter Logo Streamline Icon: https://streamlinehq.com