Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Targeting relative risk heterogeneity with causal forests (2309.15793v3)

Published 26 Sep 2023 in stat.ME, cs.LG, and stat.ML

Abstract: The identification of heterogeneous treatment effects (HTE) across subgroups is of significant interest in clinical trial analysis. Several state-of-the-art HTE estimation methods, including causal forests, apply recursive partitioning for non-parametric identification of relevant covariates and interactions. However, the partitioning criterion is typically based on differences in absolute risk. This can dilute statistical power by masking variation in the relative risk, which is often a more appropriate quantity of clinical interest. In this work, we propose and implement a methodology for modifying causal forests to target relative risk, using a novel node-splitting procedure based on exhaustive generalized linear model comparison. We present results from simulated data that suggest relative risk causal forests can capture otherwise undetected sources of heterogeneity. We implement our method on real-world trial data to explore HTEs for liraglutide in patients with type 2 diabetes.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets