Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating the changes in BOLD responses during viewing of images with varied complexity: An fMRI time-series based analysis on human vision (2309.15495v1)

Published 27 Sep 2023 in cs.CV and eess.SP

Abstract: Functional MRI (fMRI) is widely used to examine brain functionality by detecting alteration in oxygenated blood flow that arises with brain activity. This work aims to investigate the neurological variation of human brain responses during viewing of images with varied complexity using fMRI time series (TS) analysis. Publicly available BOLD5000 dataset is used for this purpose which contains fMRI scans while viewing 5254 distinct images of diverse categories, drawn from three standard computer vision datasets: COCO, Imagenet and SUN. To understand vision, it is important to study how brain functions while looking at images of diverse complexities. Our first study employs classical machine learning and deep learning strategies to classify image complexity-specific fMRI TS, represents instances when images from COCO, Imagenet and SUN datasets are seen. The implementation of this classification across visual datasets holds great significance, as it provides valuable insights into the fluctuations in BOLD signals when perceiving images of varying complexities. Subsequently, temporal semantic segmentation is also performed on whole fMRI TS to segment these time instances. The obtained result of this analysis has established a baseline in studying how differently human brain functions while looking into images of diverse complexities. Therefore, accurate identification and distinguishing of variations in BOLD signals from fMRI TS data serves as a critical initial step in vision studies, providing insightful explanations for how static images with diverse complexities are perceived.

Citations (1)

Summary

We haven't generated a summary for this paper yet.