Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Competitive Auctions with Imperfect Predictions (2309.15414v2)

Published 27 Sep 2023 in cs.GT

Abstract: The competitive auction was first proposed by Goldberg, Hartline, and Wright. In their paper, they introduce the competitive analysis framework of online algorithm designing into the traditional revenue-maximizing auction design problem. While the competitive analysis framework only cares about the worst-case bound, a growing body of work in the online algorithm community studies the learning-augmented framework. In this framework, designers are allowed to leverage imperfect machine-learned predictions of unknown information and pursue better theoretical guarantees when the prediction is accurate(consistency). Meanwhile, designers also need to maintain a nearly-optimal worst-case ratio(robustness). In this work, we revisit the competitive auctions in the learning-augmented setting. We leverage the imperfect predictions of the private value of the bidders and design the learning-augmented mechanisms for several competitive auctions with different constraints, including digital good auctions, limited-supply auctions, and general downward-closed permutation environments. For all these auction environments, our mechanisms enjoy $1$-consistency against the strongest benchmark $OPT$, which is impossible to achieve $O(1)$-competitive without predictions. At the same time, our mechanisms also maintain the $O(1)$-robustness against all benchmarks considered in the traditional competitive analysis. Considering the possible inaccuracy of the predictions, we provide a reduction that transforms our learning-augmented mechanisms into an error-tolerant version, which enables the learning-augmented mechanism to ensure satisfactory revenue in scenarios where the prediction error is moderate.

Citations (9)

Summary

We haven't generated a summary for this paper yet.