Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three steps towards dose optimization for oncology dose finding (2309.15333v1)

Published 27 Sep 2023 in stat.ME and stat.AP

Abstract: Traditional dose selection for oncology registration trials typically employs a one- or two-step single maximum tolerated dose (MTD) approach. However, this approach may not be appropriate for molecularly targeted therapy that tends to have toxicity profiles that are markedly different to cytotoxic agents. The US Food and Drug Administration launched Project Optimus to reform dose optimization in oncology drug development and has recently released a related Guidance for Industry. In response to these initiatives, we propose a "three steps towards dose optimization" procedure and discuss the details in dose optimization designs and analyses in this manuscript. The first step is dose-escalation to identify the MTD or maximum administered dose with an efficient hybrid design, which can offer good overdose control and increases the likelihood of the recommended MTD being close to the true MTD. The second step is the selection of appropriate recommended doses for expansion (RDEs), based on all available data including emerging safety, pharmacokinetics, pharmacodynamics, and other biomarker information. The third step is dose optimization, which uses data from a randomized fractional factorial design with multiple RDEs explored in multiple tumor cohorts during the expansion phase to ensure a feasible dose is selected for registration trials, and that the tumor type most sensitive to the investigative treatment is identified. We believe using this three-step approach can increase the likelihood of selecting the optimal dose for registration trial, one that demonstrates a balanced safety profile while retaining much of the efficacy observed at the MTD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jason J. Z. Liao (2 papers)
  2. Ekaterine Asatiani (1 paper)
  3. Qingyang Liu (17 papers)
  4. Kevin Hou (1 paper)

Summary

We haven't generated a summary for this paper yet.