Structural identifiability analysis of linear reaction-advection-diffusion processes in mathematical biology (2309.15326v3)
Abstract: Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed reaction-advection-diffusion (RAD) PDE models that are linear in the unobserved quantities. We show that the differential algebra approach can always, in theory, be applied to such models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease in structural identifiability. We conclude by discussing future possibilities and the computational cost of performing structural identifiability analysis on more general PDE models.
- A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nature Protocols 9:439 456. (doi:10.1038/nprot.2014.025).
- Gábor A, Banga JR. 2015. Robust and efficient parameter estimation in dynamic models of biological systems. BMC Systems Biology 9:74. (doi:10.1186/s12918-015-0219-2).
- Bellman R, Åström KJ. 1970. On structural identifiability. Mathematical Biosciences 7:329–339. (doi:10.1016/0025-5564(70)90132-x).
- Walter E, Lecourtier Y. 1981. Unidentifiable compartmental models: what to do? Mathematical Biosciences 56:1–25. (doi:10.1016/0025-5564(81)90025-0).
- Walter E. 1987. Identifiability of Parametric Models. Elsevier Science & Technology, London, United Kingdom. (doi:10.1016/C2013-0-03836-4).
- Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929. (doi:10.1093/bioinformatics/btp358).
- Structural identifiability of systems biology models: a critical comparison of methods. PLOS One 6:e27755. (doi:10.1371/journal.pone.0027755).
- Structural identifiability of dynamic systems biology models. PLOS Computational Biology 12:e1005153. (doi:10.1371/journal.pcbi.1005153).
- An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner Bases. Mathematical Biosciences 222:61–72. (doi:10.1016/j.mbs.2009.08.010).
- Eisenberg MC, Jain HV. 2017. A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study. Journal of Theoretical Biology 431:63–78. (doi:10.1016/j.jtbi.2017.07.018).
- Ljung L, Glad T. 1994. On global identifiability for arbitrary model parametrizations. Automatica 30:265–276. (doi:10.1016/0005-1098(94)90029-9).
- DAISY: A new software tool to test global identifiability of biological and physiological systems. Computer Methods and Programs in Biomedicine 88:52–61. (doi:10.1016/j.cmpb.2007.07.002).
- Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics 30:1440–1448. (doi:10.1093/bioinformatics/btu006).
- Barreiro XR, Villaverde AF. 2023. Benchmarking tools for a priori identifiability analysis. Bioinformatics 39:btad065. (doi:10.1093/bioinformatics/btad065).
- SIAN: software for structural identifiability analysis of ODE models. Bioinformatics 35:2873–2874. (doi:10.1093/bioinformatics/bty1069).
- On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: a novel web implementation. PLOS One 9:e110261. (doi:10.1371/journal.pone.0110261).
- On structural and practical identifiability. Current Opinion in Systems Biology 25:60–69. (doi:10.1016/j.coisb.2021.03.005).
- GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models. Bioinformatics 34:1421–1423. (doi:10.1093/bioinformatics/btx735).
- Similarity transformation approach to identifiability analysis of nonlinear compartmental models. Mathematical Biosciences 93:217–248. (doi:10.1016/0025-5564(89)90024-2).
- Murray JD. 2002. Mathematical Biology. Springer-Verlag, Berlin. 3 edition. (doi:10.1007/b98868).
- Practical parameter identifiability for spatio-temporal models of cell invasion. Journal of The Royal Society Interface 17:20200055. (doi:10.1098/rsif.2020.0055).
- Parameter identifiability and model selection for partial differential equation models of cell invasion. arXiv .
- Kinetics of Morphogen Gradient Formation. Science 315:521–525. (doi:10.1126/science.1135774).
- Morphogen gradient scaling by recycling of intracellular Dpp. Nature 602:287–293. (doi:10.1038/s41586-021-04346-w).
- Structural identifiability analysis of age-structured PDE epidemic models. Journal of Mathematical Biology 84:9. (doi:10.1007/s00285-021-01711-1).
- Parameter identifiability in PDE models of fluorescence recovery after photobleaching. arXiv .
- Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. Mathematical Biosciences 174:1–26. (doi:10.1016/s0025-5564(01)00079-7).
- Identifying density-dependent interactions in collective cell behaviour. Journal of The Royal Society Interface 17:20200143. (doi:10.1098/rsif.2020.0143).
- Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using approximate Bayesian computation. Journal of the Royal Society Interface 18:20210362. (doi:10.1098/rsif.2021.0362).
- Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498. (doi:10.1016/j.cell.2007.12.033).
- Mathematical models for cell migration with real-time cell cycle dynamics. Biophysical Journal 114:1241–1253. (doi:10.1016/j.bpj.2017.12.041).
- Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOMTM assay data using the Fisher-Kolmogorov model. BMC Systems Biology 9:38. (doi:10.1186/s12918-015-0182-y).
- Cobelli C, DiStefano JJ. 1980. Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 239:7—24. (doi:10.1152/ajpregu.1980.239.1.r7).
- A mechanical G2 checkpoint controls epithelial cell division through E-cadherin-mediated regulation of Wee1-Cdk1. Cell Reports 41:111475. (doi:10.1016/j.celrep.2022.111475).
- Global identifiability of differential models. Communications on Pure and Applied Mathematics 73:1831–1879. (doi:10.1002/cpa.21921).
- An efficient method for structural identifiability analysis of large dynamic systems. IFAC Proceedings Volumes 45:941–946. (doi:10.3182/20120711-3-be-2027.00381).
- Turing AM. 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 237:37–72. (doi:10.1098/rstb.1952.0012). URL https://doi.org/10.1098/rstb.1952.0012.
- Analytical solutions for multiple species reactive transport in multiple dimensions. Journal of Contaminant Hydrology 35:429–440. (doi:10.1016/s0169-7722(98)00105-3).
- Alternative to Ritt’s pseudodivision for finding the input-output equations of multi-output models. Mathematical Biosciences 239:117–123. (doi:10.1016/j.mbs.2012.04.008).
- Parameterising continuum models of heat transfer in heterogeneous living skin using experimental data. International Journal of Heat and Mass Transfer 128:964–975. (doi:10.1016/j.ijheatmasstransfer.2018.09.054).
- Model-based data analysis of tissue growth in thin 3D printed scaffolds. Journal of Theoretical Biology 528:110852. (doi:10.1016/j.jtbi.2021.110852).
- Identifiability analysis for stochastic differential equation models in systems biology. Journal of The Royal Society Interface 17:20200652. (doi:10.1098/rsif.2020.0652).