Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

V2X-Lead: LiDAR-based End-to-End Autonomous Driving with Vehicle-to-Everything Communication Integration (2309.15252v1)

Published 26 Sep 2023 in cs.RO and cs.LG

Abstract: This paper presents a LiDAR-based end-to-end autonomous driving method with Vehicle-to-Everything (V2X) communication integration, termed V2X-Lead, to address the challenges of navigating unregulated urban scenarios under mixed-autonomy traffic conditions. The proposed method aims to handle imperfect partial observations by fusing the onboard LiDAR sensor and V2X communication data. A model-free and off-policy deep reinforcement learning (DRL) algorithm is employed to train the driving agent, which incorporates a carefully designed reward function and multi-task learning technique to enhance generalization across diverse driving tasks and scenarios. Experimental results demonstrate the effectiveness of the proposed approach in improving safety and efficiency in the task of traversing unsignalized intersections in mixed-autonomy traffic, and its generalizability to previously unseen scenarios, such as roundabouts. The integration of V2X communication offers a significant data source for autonomous vehicles (AVs) to perceive their surroundings beyond onboard sensors, resulting in a more accurate and comprehensive perception of the driving environment and more safe and robust driving behavior.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. S. Khaitan and J. M. Dolan, “State dropout-based curriculum reinforcement learning for self-driving at unsignalized intersections,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 12 219–12 224.
  2. Z. Deng, K. Yang, W. Shen, and Y. Shi, “Cooperative platoon formation of connected and autonomous vehicles: Toward efficient merging coordination at unsignalized intersections,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  3. Z. Deng, J. Fan, Y. Shi, and W. Shen, “A coevolutionary algorithm for cooperative platoon formation of connected and automated vehicles,” IEEE Transactions on Vehicular Technology, 2022.
  4. C. Wu, A. R. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow: A modular learning framework for mixed autonomy traffic,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1270–1286, 2021.
  5. Z. Mu, Z. Chen, S. Ryu, S. S. Avedisov, R. Guo, and B. B. Park, “Cooperative platooning with mixed traffic on urban arterial roads,” in 2022 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2022, pp. 1578–1583.
  6. A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad, “A survey of end-to-end driving: Architectures and training methods,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 4, pp. 1364–1384, 2020.
  7. R. Xu, H. Xiang, Z. Tu, X. Xia, M.-H. Yang, and J. Ma, “V2x-vit: Vehicle-to-everything cooperative perception with vision transformer,” in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIX.   Springer, 2022, pp. 107–124.
  8. K. Li, Z. Ouyang, L. Hu, D. Hao, and L. Kneip, “Robust srif-based lidar-imu localization for autonomous vehicles,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 5381–5387.
  9. A. H. Qureshi, A. Simeonov, M. J. Bency, and M. C. Yip, “Motion planning networks,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 2118–2124.
  10. L. Cui, S. Wang, J. Lai, X. Chen, S. Yang, Z. Zhang, and Z.-P. Jiang, “Nonlinear balance control of an unmanned bicycle: Design and experiments,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 7279–7284.
  11. T. Wu, A. Luo, R. Huang, H. Cheng, and Y. Zhao, “End-to-end driving model for steering control of autonomous vehicles with future spatiotemporal features,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 950–955.
  12. A. Amini, W. Schwarting, G. Rosman, B. Araki, S. Karaman, and D. Rus, “Variational autoencoder for end-to-end control of autonomous driving with novelty detection and training de-biasing,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 568–575.
  13. J. Chen, Z. Xu, and M. Tomizuka, “End-to-end autonomous driving perception with sequential latent representation learning,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 1999–2006.
  14. L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on imitation learning techniques for end-to-end autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  15. B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909–4926, 2021.
  16. Z. Yan, A. R. Kreidieh, E. Vinitsky, A. M. Bayen, and C. Wu, “Unified automatic control of vehicular systems with reinforcement learning,” IEEE Transactions on Automation Science and Engineering, 2022.
  17. Z. Liu, A. Amini, S. Zhu, S. Karaman, S. Han, and D. L. Rus, “Efficient and robust lidar-based end-to-end navigation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 13 247–13 254.
  18. X. Liang, T. Wang, L. Yang, and E. Xing, “Cirl: Controllable imitative reinforcement learning for vision-based self-driving,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 584–599.
  19. P. Cai, S. Wang, H. Wang, and M. Liu, “Carl-lead: Lidar-based end-to-end autonomous driving with contrastive deep reinforcement learning,” arXiv preprint arXiv:2109.08473, 2021.
  20. Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh, “Polarnet: An improved grid representation for online lidar point clouds semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9601–9610.
  21. P. Wu, S. Chen, and D. N. Metaxas, “Motionnet: Joint perception and motion prediction for autonomous driving based on bird’s eye view maps,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 385–11 395.
  22. M. Ferreira and P. M. d’Orey, “On the impact of virtual traffic lights on carbon emissions mitigation,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 1, pp. 284–295, 2011.
  23. Z. Deng, Y. Shi, Q. Han, L. Lv, and W. Shen, “A conflict duration graph-based coordination method for connected and automated vehicles at signal-free intersections,” Applied Sciences, vol. 10, no. 18, p. 6223, 2020.
  24. R. Deng, B. Di, and L. Song, “Cooperative collision avoidance for overtaking maneuvers in cellular v2x-based autonomous driving,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4434–4446, 2019.
  25. Z. Deng, J. Fan, Y. Shi, and W. Shen, “Longitudinal trajectory optimization for connected and automated vehicles by evolving cubic splines with coevolution,” in 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD).   IEEE, 2022, pp. 641–646.
  26. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” in International conference on machine learning.   PMLR, 2018, pp. 1861–1870.
  27. T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.
  28. Q. Li, Z. Peng, L. Feng, Q. Zhang, Z. Xue, and B. Zhou, “Metadrive: Composing diverse driving scenarios for generalizable reinforcement learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  29. R. Xu, Y. Guo, X. Han, X. Xia, H. Xiang, and J. Ma, “Opencda: an open cooperative driving automation framework integrated with co-simulation,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).   IEEE, 2021, pp. 1155–1162.
  30. R. S. Hallyburton, S. Zhang, and M. Pajic, “Avstack: An open-source, reconfigurable platform for autonomous vehicle development,” arXiv preprint arXiv:2212.13857, 2022.
  31. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3: Reliable reinforcement learning implementations,” The Journal of Machine Learning Research, vol. 22, no. 1, pp. 12 348–12 355, 2021.
  32. M. Tsao, K. Yang, S. Zoepf, and M. Pavone, “Trust but verify: Cryptographic data privacy for mobility management,” IEEE Transactions on Control of Network Systems, vol. 9, no. 1, pp. 50–61, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhiyun Deng (4 papers)
  2. Yanjun Shi (1 paper)
  3. Weiming Shen (53 papers)

Summary

We haven't generated a summary for this paper yet.