Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic 3D Multi-Object Cooperative Tracking for Autonomous Driving via Differentiable Multi-Sensor Kalman Filter (2309.14655v2)

Published 26 Sep 2023 in cs.RO and cs.CV

Abstract: Current state-of-the-art autonomous driving vehicles mainly rely on each individual sensor system to perform perception tasks. Such a framework's reliability could be limited by occlusion or sensor failure. To address this issue, more recent research proposes using vehicle-to-vehicle (V2V) communication to share perception information with others. However, most relevant works focus only on cooperative detection and leave cooperative tracking an underexplored research field. A few recent datasets, such as V2V4Real, provide 3D multi-object cooperative tracking benchmarks. However, their proposed methods mainly use cooperative detection results as input to a standard single-sensor Kalman Filter-based tracking algorithm. In their approach, the measurement uncertainty of different sensors from different connected autonomous vehicles (CAVs) may not be properly estimated to utilize the theoretical optimality property of Kalman Filter-based tracking algorithms. In this paper, we propose a novel 3D multi-object cooperative tracking algorithm for autonomous driving via a differentiable multi-sensor Kalman Filter. Our algorithm learns to estimate measurement uncertainty for each detection that can better utilize the theoretical property of Kalman Filter-based tracking methods. The experiment results show that our algorithm improves the tracking accuracy by 17% with only 0.037x communication costs compared with the state-of-the-art method in V2V4Real. Our code and videos are available at https://github.com/eddyhkchiu/DMSTrack/ and https://eddyhkchiu.github.io/dmstrack.github.io/ .

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. R. Xu, X. Xia, J. Li, H. Li, S. Zhang, Z. Tu, Z. Meng, H. Xiang, X. Dong, R. Song, H. Yu, B. Zhou, and J. Ma, “V2v4real: A real-world large-scale dataset for vehicle-to-vehicle cooperative perception,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
  2. Y. Li, D. Ma, Z. An, Z. Wang, Y. Zhong, S. Chen, and C. Feng, “V2x-sim: Multi-agent collaborative perception dataset and benchmark for autonomous driving,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 914–10 921, 2022.
  3. H. Yu, W. Yang, H. Ruan, Z. Yang, Y. Tang, X. Gao, X. Hao, Y. Shi, Y. Pan, N. Sun, J. Song, J. Yuan, P. Luo, and Z. Nie, “V2x-seq: A large-scale sequential dataset for vehicle-infrastructure cooperative perception and forecasting,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  4. Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3d point clouds,” in Proceedings of the 4th ACM/IEEE Symposium on Edge Computing.   Association for Computing Machinery, 2019, p. 88–100.
  5. R. Xu, H. Xiang, X. Xia, X. Han, J. Li, and J. Ma, “Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication,” in IEEE International Conference on Robotics and Automation (ICRA), 2022.
  6. T.-H. Wang, S. Manivasagam, M. Liang, B. Yang, W. Zeng, J. Tu, and R. Urtasun, “V2vnet: Vehicle-to-vehicle communication for joint perception and prediction,” in European Conference on Computer Vision (ECCV), 2020.
  7. R. Xu, H. Xiang, Z. Tu, X. Xia, M.-H. Yang, and J. Ma, “V2x-vit: Vehicle-to-everything cooperative perception with vision transformer,” in Proceedings of the European Conference on Computer Vision (ECCV), 2022.
  8. R. Xu, Z. Tu, H. Xiang, W. Shao, B. Zhou, and J. Ma, “Cobevt: Cooperative bird’s eye view semantic segmentation with sparse transformers,” in Conference on Robot Learning (CoRL), 2022.
  9. Y. Li, S. Ren, P. Wu, S. Chen, C. Feng, and W. Zhang, “Learning distilled collaboration graph for multi-agent perception,” in Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021), 2021.
  10. Y.-C. Liu, J. Tian, N. Glaser, and Z. Kira, “When2com: Multi-agent perception via communication graph grouping,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  11. Y.-C. Liu, J. Tian, C.-Y. Ma, N. Glaser, C.-W. Kuo, and Z. Kira, “Who2com: Collaborative perception via learnable handshake communication,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 6876–6883.
  12. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, 1960.
  13. D. Willner, C. B. Chang, and K. P. Dunn, “Kalman filter algorithms for a multi-sensor system,” in 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes, 1976, pp. 570–574.
  14. T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, “Backprop kf: Learning discriminative deterministic state estimators,” in Proceedings of the 30th International Conference on Neural Information Processing Systems, ser. NIPS’16, 2016, p. 4383–4391.
  15. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
  16. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  17. P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception for autonomous driving: Waymo open dataset,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
  18. S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. R. Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens, and D. Anguelov, “Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset,” in IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 9710–9719.
  19. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point clouds,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
  20. T. Yin, X. Zhou, and P. Krähenbühl, “Center-based 3d object detection and tracking,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
  21. X. Weng, J. Wang, D. Held, and K. Kitani, “3D Multi-Object Tracking: A Baseline and New Evaluation Metrics,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.
  22. X. Weng, Y. Wang, Y. Man, and K. Kitani, “Gnn3dmot: Graph neural network for 3d multi-object tracking with multi-feature learning,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  23. H.-k. Chiu, A. Prioletti, J. Li, and J. Bohg, “Probabilistic 3d multi-object tracking for autonomous driving,” arXiv preprint arXiv:2001.05673, 2020.
  24. H.-k. Chiu, J. Li, R. Ambrus, and J. Bohg, “Probabilistic 3d multi-modal, multi-object tracking for autonomous driving,” IEEE International Conference on Robotics and Automation (ICRA), 2021.
  25. Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, L. Lu, X. Jia, Q. Liu, J. Dai, Y. Qiao, and H. Li, “Planning-oriented autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
  26. M. A. Lee, B. Yi, R. Martín-Martín, S. Savarese, and J. Bohg, “Multimodal sensor fusion with differentiable filters,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 10 444–10 451.
  27. A. Kloss, G. Martius, and J. Bohg, “How to train your differentiable filter,” in Autonomous Robots, vol. 45, 2021, pp. 561–578.
  28. H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
  29. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems (NeurIPS), 2017.
  30. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2015.
Citations (3)

Summary

We haven't generated a summary for this paper yet.