Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling the Potential of Deep Learning Models for Solar Flare Prediction in Near-Limb Regions (2309.14483v1)

Published 25 Sep 2023 in astro-ph.SR, astro-ph.IM, cs.LG, and cs.CV

Abstract: This study aims to evaluate the performance of deep learning models in predicting $\geq$M-class solar flares with a prediction window of 24 hours, using hourly sampled full-disk line-of-sight (LoS) magnetogram images, particularly focusing on the often overlooked flare events corresponding to the near-limb regions (beyond $\pm$70${\circ}$ of the solar disk). We trained three well-known deep learning architectures--AlexNet, VGG16, and ResNet34 using transfer learning and compared and evaluated the overall performance of our models using true skill statistics (TSS) and Heidke skill score (HSS) and computed recall scores to understand the prediction sensitivity in central and near-limb regions for both X- and M-class flares. The following points summarize the key findings of our study: (1) The highest overall performance was observed with the AlexNet-based model, which achieved an average TSS$\sim$0.53 and HSS$\sim$0.37; (2) Further, a spatial analysis of recall scores disclosed that for the near-limb events, the VGG16- and ResNet34-based models exhibited superior prediction sensitivity. The best results, however, were seen with the ResNet34-based model for the near-limb flares, where the average recall was approximately 0.59 (the recall for X- and M-class was 0.81 and 0.56 respectively) and (3) Our research findings demonstrate that our models are capable of discerning complex spatial patterns from full-disk magnetograms and exhibit skill in predicting solar flares, even in the vicinity of near-limb regions. This ability holds substantial importance for operational flare forecasting systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. L. Fletcher, B. R. Dennis, H. S. Hudson, S. Krucker, K. Phillips, A. Veronig, M. Battaglia, L. Bone, A. Caspi, Q. Chen, P. Gallagher, P. T. Grigis, H. Ji, W. Liu, R. O. Milligan, and M. Temmer, “An observational overview of solar flares,” Space Science Reviews, vol. 159, no. 1-4, pp. 19–106, Aug. 2011.
  2. C. Pandey, A. Ji, R. A. Angryk, M. K. Georgoulis, and B. Aydin, “Towards coupling full-disk and active region-based flare prediction for operational space weather forecasting,” Frontiers in Astronomy and Space Sciences, vol. 9, Aug. 2022. [Online]. Available: https://doi.org/10.3389/fspas.2022.897301
  3. C. Pandey, M. K. Georgoulis, B. Aydin, R. A. Angryk, and A. Ji, “Exploring heuristics in full-disk aggregation from individual active region prediction of solar flares,” in 44th COSPAR Scientific Assembly. Held 16-24 July, vol. 44, 2022, p. 3457.
  4. J. T. Hoeksema, Y. Liu, K. Hayashi, X. Sun, J. Schou, S. Couvidat, A. Norton, M. Bobra, R. Centeno, K. D. Leka, G. Barnes, and M. Turmon, “The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: Overview and performance,” Solar Physics, vol. 289, no. 9, pp. 3483–3530, Mar. 2014.
  5. D. A. Falconer, S. K. Tiwari, R. L. Moore, and I. Khazanov, “A new method to quantify and reduce the net projection error in whole-solar-active-region parameters measured from vector magnetograms,” The Astrophysical Journal, vol. 833, no. 2, p. L31, Dec. 2016.
  6. X. Huang, H. Wang, L. Xu, J. Liu, R. Li, and X. Dai, “Deep learning based solar flare forecasting model. i. results for line-of-sight magnetograms,” The Astrophysical Journal, vol. 856, no. 1, p. 7, Mar. 2018.
  7. A. Ji, B. Aydin, M. K. Georgoulis, and R. Angryk, “All-clear flare prediction using interval-based time series classifiers,” in 2020 IEEE International Conference on Big Data (Big Data).   IEEE, Dec. 2020, pp. 4218–4225. [Online]. Available: https://doi.org/10.1109/bigdata50022.2020.9377906
  8. M. D. Crown, “Validation of the NOAA space weather prediction center's solar flare forecasting look-up table and forecaster-issued probabilities,” Space Weather, vol. 10, no. 6, pp. n/a–n/a, Jun. 2012.
  9. K. Lee, Y.-J. Moon, J.-Y. Lee, K.-S. Lee, and H. Na, “Solar flare occurrence rate and probability in terms of the sunspot classification supplemented with sunspot area and its changes,” Solar Physics, vol. 281, no. 2, pp. 639–650, Sep. 2012.
  10. K. Kusano, T. Iju, Y. Bamba, and S. Inoue, “A physics-based method that can predict imminent large solar flares,” Science, vol. 369, no. 6503, pp. 587–591, Jul. 2020.
  11. X. Li, Y. Zheng, X. Wang, and L. Wang, “Predicting solar flares using a novel deep convolutional neural network,” The Astrophysical Journal, vol. 891, no. 1, p. 10, Feb. 2020.
  12. K. Whitman, R. Egeland, I. G. Richardson, C. Allison, P. Quinn, J. Barzilla, I. Kitiashvili, V. Sadykov, H. M. Bain, M. Dierckxsens, M. L. Mays, T. Tadesse, K. T. Lee, E. Semones, J. G. Luhmann, M. Núñez, S. M. White, S. W. Kahler, A. G. Ling, D. F. Smart, M. A. Shea, V. Tenishev, S. F. Boubrahimi, B. Aydin, P. Martens, R. Angryk, M. S. Marsh, S. Dalla, N. Crosby, N. A. Schwadron, K. Kozarev, M. Gorby, M. A. Young, M. Laurenza, E. W. Cliver, T. Alberti, M. Stumpo, S. Benella, A. Papaioannou, A. Anastasiadis, I. Sandberg, M. K. Georgoulis, A. Ji, D. Kempton, C. Pandey, G. Li, J. Hu, G. P. Zank, E. Lavasa, G. Giannopoulos, D. Falconer, Y. Kadadi, I. Fernandes, M. A. Dayeh, A. Muñoz-Jaramillo, S. Chatterjee, K. D. Moreland, I. V. Sokolov, I. I. Roussev, A. Taktakishvili, F. Effenberger, T. Gombosi, Z. Huang, L. Zhao, N. Wijsen, A. Aran, S. Poedts, A. Kouloumvakos, M. Paassilta, R. Vainio, A. Belov, E. A. Eroshenko, M. A. Abunina, A. A. Abunin, C. C. Balch, O. Malandraki, M. Karavolos, B. Heber, J. Labrenz, P. Kühl, A. G. Kosovichev, V. Oria, G. M. Nita, E. Illarionov, P. M. O’Keefe, Y. Jiang, S. H. Fereira, A. Ali, E. Paouris, S. Aminalragia-Giamini, P. Jiggens, M. Jin, C. O. Lee, E. Palmerio, A. Bruno, S. Kasapis, X. Wang, Y. Chen, B. Sanahuja, D. Lario, C. Jacobs, D. T. Strauss, R. Steyn, J. van den Berg, B. Swalwell, C. Waterfall, M. Nedal, R. Miteva, M. Dechev, P. Zucca, A. Engell, B. Maze, H. Farmer, T. Kerber, B. Barnett, J. Loomis, N. Grey, B. J. Thompson, J. A. Linker, R. M. Caplan, C. Downs, T. Török, R. Lionello, V. Titov, M. Zhang, and P. Hosseinzadeh, “Review of solar energetic particle models,” Advances in Space Research, Aug. 2022. [Online]. Available: https://doi.org/10.1016/j.asr.2022.08.006
  13. C. Pandey, R. A. Angryk, M. K. Georgoulis, and B. Aydin, “Explainable deep learning-based solar flare prediction with post hoc attention for operational forecasting,” 2023. [Online]. Available: https://arxiv.org/abs/2308.02682
  14. C. Pandey, A. Ji, T. Nandakumar, R. A. Angryk, and B. Aydin, “Exploring deep learning for full-disk solar flare prediction with empirical insights from guided grad-cam explanations,” 2023. [Online]. Available: https://arxiv.org/abs/2308.15712
  15. J. Hong, A. Ji, C. Pandey, and B. Aydin, “Beyond traditional flare forecasting: A data-driven labeling approach for high-fidelity predictions,” in Big Data Analytics and Knowledge Discovery.   Springer Nature Switzerland, 2023, pp. 380–385. [Online]. Available: https://doi.org/10.1007/978-3-031-39831-5_34
  16. T. Aso, T. Ogawa, and M. Abe, “Application of back-propagation neural computing for the short-term prediction of solar flares.” Journal of geomagnetism and geoelectricity, vol. 46, no. 8, pp. 663–668, 1994.
  17. M. G. Bobra, X. Sun, J. T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi, G. Barnes, and K. D. Leka, “The helioseismic and magnetic imager (HMI) vector magnetic field pipeline: SHARPs – space-weather HMI active region patches,” Solar Physics, vol. 289, no. 9, pp. 3549–3578, Apr. 2014.
  18. C. Pandey, R. A. Angryk, and B. Aydin, “Solar flare forecasting with deep neural networks using compressed full-disk HMI magnetograms,” in 2021 IEEE International Conference on Big Data (Big Data).   IEEE, Dec. 2021, pp. 1725–1730. [Online]. Available: https://doi.org/10.1109/bigdata52589.2021.9671322
  19. C. Pandey, R. Angryk, and B. Aydin, “Deep neural networks based solar flare prediction using compressed full-disk line-of-sight magnetograms,” in Information Management and Big Data.   Springer International Publishing, 2022, pp. 380–396. [Online]. Available: https://doi.org/10.1007/978-3-031-04447-2_26
  20. C. Pandey, R. A. Angryk, and B. Aydin, “Explaining full-disk deep learning model for solar flare prediction using attribution methods,” 2023. [Online]. Available: https://arxiv.org/abs/2307.15878
  21. A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” 2014.
  22. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2014.
  23. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.
  24. J. Schou, P. H. Scherrer, R. I. Bush, R. Wachter, S. Couvidat, M. C. Rabello-Soares, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, D. J. Akin, B. A. Allard, J. W. Miles, R. Rairden, R. A. Shine, T. D. Tarbell, A. M. Title, C. J. Wolfson, D. F. Elmore, A. A. Norton, and S. Tomczyk, “Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO),” Solar Physics, vol. 275, no. 1-2, pp. 229–259, Oct. 2011.
  25. W. Pesnell, B. J. Thompson, and P. C. Chamberlin, “The solar dynamics observatory (SDO),” Solar Physics, vol. 275, no. 1-2, pp. 3–15, Oct. 2011.
  26. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” 2015.
  27. L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural networks using large learning rates,” 2017.
  28. DMLab, “Source code,” 2023. [Online]. Available: https://bitbucket.org/gsudmlab/fulldisk-spatial-analytics/src/main/
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chetraj Pandey (10 papers)
  2. Rafal A. Angryk (21 papers)
  3. Berkay Aydin (23 papers)
Citations (3)