Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simplicity of AdS Super Yang-Mills at One Loop (2309.14413v1)

Published 25 Sep 2023 in hep-th

Abstract: We perform a systematic bootstrap analysis of four-point one-loop Mellin amplitudes for super gluons in $\mathrm{AdS}_5\times\mathrm{S}3$ with arbitrary Kaluza-Klein weights. The analysis produces the general expressions for these amplitudes at extremalities two and three, as well as analytic results for many other special cases. From these results we observe remarkable simplicity. We find that the Mellin amplitudes always contain only simultaneous poles in two Mellin-Mandelstam variables, extending a previous observation in the simplest case with the lowest Kaluza-Klein weights. Moreover, we discover a substantial extension of the implication of the eight-dimensional hidden conformal symmetry, which goes far beyond the Mellin poles associated with the leading logarithmic singularities. This leaves only a small finite set of poles which can be determined on a case-by-case basis from the contributions of protected operators in the OPE.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. G. Mack, “D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes,” arXiv:0907.2407 [hep-th].
  2. G. Mack, “D-dimensional Conformal Field Theories with anomalous dimensions as Dual Resonance Models,” Bulg. J. Phys. 36 (2009) 214–226, arXiv:0909.1024 [hep-th].
  3. J. Penedones, “Writing CFT correlation functions as AdS scattering amplitudes,” JHEP 03 (2011) 025, arXiv:1011.1485 [hep-th].
  4. A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju, and B. C. van Rees, “A Natural Language for AdS/CFT Correlators,” JHEP 11 (2011) 095, arXiv:1107.1499 [hep-th].
  5. L. Rastelli and X. Zhou, “Mellin amplitudes for A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 118 no. 9, (2017) 091602, arXiv:1608.06624 [hep-th].
  6. L. Rastelli and X. Zhou, “How to Succeed at Holographic Correlators Without Really Trying,” JHEP 04 (2018) 014, arXiv:1710.05923 [hep-th].
  7. X. Zhou, “On Superconformal Four-Point Mellin Amplitudes in Dimension d>2𝑑2d>2italic_d > 2,” JHEP 08 (2018) 187, arXiv:1712.02800 [hep-th].
  8. L. Rastelli and X. Zhou, “Holographic Four-Point Functions in the (2, 0) Theory,” JHEP 06 (2018) 087, arXiv:1712.02788 [hep-th].
  9. X. Zhou, “On Mellin Amplitudes in SCFTs with Eight Supercharges,” JHEP 07 (2018) 147, arXiv:1804.02397 [hep-th].
  10. L. Rastelli, K. Roumpedakis, and X. Zhou, “𝐀𝐝𝐒𝟑×𝐒𝟑subscript𝐀𝐝𝐒3superscript𝐒3\mathbf{AdS_{3}\times S^{3}}bold_AdS start_POSTSUBSCRIPT bold_3 end_POSTSUBSCRIPT × bold_S start_POSTSUPERSCRIPT bold_3 end_POSTSUPERSCRIPT Tree-Level Correlators: Hidden Six-Dimensional Conformal Symmetry,” JHEP 10 (2019) 140, arXiv:1905.11983 [hep-th].
  11. L. F. Alday and X. Zhou, “All Holographic Four-Point Functions in All Maximally Supersymmetric CFTs,” Phys. Rev. X 11 no. 1, (2021) 011056, arXiv:2006.12505 [hep-th].
  12. L. F. Alday and X. Zhou, “All Tree-Level Correlators for M-theory on A⁢d⁢S7×S4𝐴𝑑subscript𝑆7superscript𝑆4AdS_{7}\times S^{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 125 no. 13, (2020) 131604, arXiv:2006.06653 [hep-th].
  13. L. F. Alday, C. Behan, P. Ferrero, and X. Zhou, “Gluon Scattering in AdS from CFT,” JHEP 06 (2021) 020, arXiv:2103.15830 [hep-th].
  14. A. Bissi, A. Sinha, and X. Zhou, “Selected topics in analytic conformal bootstrap: A guided journey,” Phys. Rept. 991 (2022) 1–89, arXiv:2202.08475 [hep-th].
  15. F. Aprile, J. M. Drummond, P. Heslop, and H. Paul, “Unmixing Supergravity,” JHEP 02 (2018) 133, arXiv:1706.08456 [hep-th].
  16. F. Aprile, J. Drummond, P. Heslop, and H. Paul, “Double-trace spectrum of N=4𝑁4N=4italic_N = 4 supersymmetric Yang-Mills theory at strong coupling,” Phys. Rev. D 98 no. 12, (2018) 126008, arXiv:1802.06889 [hep-th].
  17. J. M. Drummond, R. Glew, and M. Santagata, “BCJ relations in A⁢d⁢S5×S3𝐴𝑑subscript𝑆5superscript𝑆3{AdS}_{5}\times S^{3}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and the double-trace spectrum of super gluons,” arXiv:2202.09837 [hep-th].
  18. S. Caron-Huot and A.-K. Trinh, “All Tree-Level Correlators in AdS×5{}_{5}\timesstart_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×S55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT Supergravity: Hidden Ten-Dimensional Conformal Symmetry,” JHEP 01 (2019) 196, arXiv:1809.09173 [hep-th].
  19. V. Gonçalves, R. Pereira, and X. Zhou, “20′superscript20′20^{\prime}20 start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Five-Point Function from A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT Supergravity,” JHEP 10 (2019) 247, arXiv:1906.05305 [hep-th].
  20. L. F. Alday, V. Gonçalves, and X. Zhou, “Supersymmetric Five-Point Gluon Amplitudes in AdS Space,” Phys. Rev. Lett. 128 no. 16, (2022) 161601, arXiv:2201.04422 [hep-th].
  21. V. Gonçalves, C. Meneghelli, R. Pereira, J. Vilas Boas, and X. Zhou, “Kaluza-Klein Five-Point Functions from AdS5×S5subscriptAdS5subscript𝑆5\textrm{AdS}_{5}\times S_{5}AdS start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT Supergravity,” arXiv:2302.01896 [hep-th].
  22. L. F. Alday, V. Gonçalves, M. Nocchi, and X. Zhou, “Six-Point AdS Gluon Amplitudes from Flat Space and Factorization,” arXiv:2307.06884 [hep-th].
  23. L. F. Alday, “On genus-one string amplitudes on A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” JHEP 04 (2021) 005, arXiv:1812.11783 [hep-th].
  24. L. F. Alday and X. Zhou, “Simplicity of AdS Supergravity at One Loop,” JHEP 09 (2020) 008, arXiv:1912.02663 [hep-th].
  25. L. F. Alday, A. Bissi, and X. Zhou, “One-loop gluon amplitudes in AdS,” JHEP 02 (2022) 105, arXiv:2110.09861 [hep-th].
  26. F. Aprile, J. M. Drummond, P. Heslop, and H. Paul, “Quantum Gravity from Conformal Field Theory,” JHEP 01 (2018) 035, arXiv:1706.02822 [hep-th].
  27. F. Aprile, J. M. Drummond, P. Heslop, and H. Paul, “Loop corrections for Kaluza-Klein AdS amplitudes,” JHEP 05 (2018) 056, arXiv:1711.03903 [hep-th].
  28. F. Aprile, J. Drummond, P. Heslop, and H. Paul, “One-loop amplitudes in A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT supergravity from 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM at strong coupling,” JHEP 03 (2020) 190, arXiv:1912.01047 [hep-th].
  29. J. M. Drummond and H. Paul, “One-loop string corrections to AdS amplitudes from CFT,” JHEP 03 (2021) 038, arXiv:1912.07632 [hep-th].
  30. J. M. Drummond, R. Glew, and H. Paul, “One-loop string corrections for AdS Kaluza-Klein amplitudes,” JHEP 12 (2021) 072, arXiv:2008.01109 [hep-th].
  31. Z. Huang and E. Y. Yuan, “Graviton Scattering in AdS5×S5subscriptAdS5superscriptS5\mathrm{AdS}_{5}\times\mathrm{S}^{5}roman_AdS start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × roman_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT at Two Loops,” arXiv:2112.15174 [hep-th].
  32. J. M. Drummond and H. Paul, “Two-loop supergravity on A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT from CFT,” JHEP 08 (2022) 275, arXiv:2204.01829 [hep-th].
  33. Z. Huang, B. Wang, E. Y. Yuan, and X. Zhou, “AdS super gluon scattering up to two loops: a position space approach,” JHEP 07 (2023) 053, arXiv:2301.13240 [hep-th].
  34. O. Aharony, A. Fayyazuddin, and J. M. Maldacena, “The Large N limit of N=2, N=1 field theories from three-branes in F theory,” JHEP 07 (1998) 013, arXiv:hep-th/9806159.
  35. A. Karch and E. Katz, “Adding flavor to AdS / CFT,” JHEP 06 (2002) 043, arXiv:hep-th/0205236.
  36. F. Aprile, J. M. Drummond, P. Heslop, H. Paul, F. Sanfilippo, M. Santagata, and A. Stewart, “Single particle operators and their correlators in free 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 11 (2020) 072, arXiv:2007.09395 [hep-th].
  37. M. Nirschl and H. Osborn, “Superconformal Ward identities and their solution,” Nucl. Phys. B 711 (2005) 409–479, arXiv:hep-th/0407060.
  38. C.-M. Chang and Y.-H. Lin, “Carving Out the End of the World or (Superconformal Bootstrap in Six Dimensions),” JHEP 08 (2017) 128, arXiv:1705.05392 [hep-th].
  39. F. A. Dolan and H. Osborn, “On short and semi-short representations for four-dimensional superconformal symmetry,” Annals Phys. 307 (2003) 41–89, arXiv:hep-th/0209056.
  40. C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Multiplets of Superconformal Symmetry in Diverse Dimensions,” JHEP 03 (2019) 163, arXiv:1612.00809 [hep-th].
  41. F. Baume, M. Fuchs, and C. Lawrie, “Superconformal Blocks for Mixed 1/2-BPS Correlators with S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) R-symmetry,” JHEP 11 (2019) 164, arXiv:1908.02768 [hep-th].
  42. S. Caron-Huot, “Analyticity in Spin in Conformal Theories,” JHEP 09 (2017) 078, arXiv:1703.00278 [hep-th].
  43. D. Simmons-Duffin, D. Stanford, and E. Witten, “A spacetime derivation of the Lorentzian OPE inversion formula,” JHEP 07 (2018) 085, arXiv:1711.03816 [hep-th].
  44. I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, “Holography from Conformal Field Theory,” JHEP 10 (2009) 079, arXiv:0907.0151 [hep-th].
  45. A. L. Fitzpatrick and J. Kaplan, “Unitarity and the Holographic S-Matrix,” JHEP 10 (2012) 032, arXiv:1112.4845 [hep-th].
Citations (7)

Summary

We haven't generated a summary for this paper yet.