Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Generalized Capacity of a Quantum Channel (2309.14141v1)

Published 25 Sep 2023 in quant-ph, cs.IT, and math.IT

Abstract: The transmission of classical information over a classical channel gave rise to the classical capacity theorem with the optimal rate in terms of the classical mutual information. Despite classical information being a subset of quantum information, the rate of the quantum capacity problem is expressed in terms of the coherent information, which does not mathematically generalize the classical mutual information. Additionally, there are multiple capacity theorems with distinct formulas when dealing with transmitting information over a noisy quantum channel. This leads to the question of what constitutes a mathematically accurate quantum generalization of classical mutual information and whether there exists a quantum task that directly extends the classical capacity problem. In this paper, we address these inquiries by introducing a quantity called the generalized information, which serves as a mathematical extension encompassing both classical mutual information and coherent information. We define a transmission task, which includes as specific instances both classical information and quantum information capacity problems, and show that the transmission capacity of this task is characterized by the generalized information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Peter W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493–R2496 (1995).
  2. B. Schumacher, “Sending entanglement through noisy quantum channels,” Phys. Rev. A 54, 2614–2628 (1996).
  3. Benjamin Schumacher and M. A. Nielsen, ‘‘Quantum data processing and error correction,” Phys. Rev. A 54, 2629–2635 (1996).
  4. H. Barnum, M. A. Nielsen,  and B. W. Schumacher, “Information transmission through a noisy quantum channel,” Phys. Rev. A 57, 4153–4175 (1998).
  5. H. Barnum, E. Knill,  and M. A. Nielsen, “On quantum fidelities and channel capacities,” IEEE Trans. Inf. Theory 46, 1317–1329 (2000).
  6. Seth Lloyd, “Capacity of the noisy quantum channel,” Physical Review A 55, 1613–1622 (1997).
  7. P. W. Shor, “The quantum channel capacity and coherent information,” in Lecture Notes, MSRI Workshop on Quantum Computation (2002).
  8. I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” IEEE Trans. Inf. Theory 51, 44–55 (2005).
  9. I. Devetak and P. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information,” Commun. Math. Phys. 256, 287–303 (2005).
  10. P.W. Shor, “The classical capacity achievable by a quantum channel assisted by limited entanglement,” preprint (2004) ArXiv[quant-ph]:0402129.
  11. M. Koashi and N. Imoto, “Compressibility of quantum mixed-state signals,” Phys. Rev. Lett. 87, 017902 (2001).
  12. M. Koashi and N. Imoto, “Operations that do not disturb partially known quantum states,” Phys. Rev. A 66, 022318 (2002).
  13. P. Hayden, R. Jozsa, D. Petz,  and A. Winter, “Structure of states which satisfy strong subadditivity of quantum entropy with equality,” Commun. Math. Phys. 246, 359–374 (2004).
  14. A. S Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Probl. Inf. Transm. 9, 3–11 (1973).
  15. C. A. Fuchs and J. van de Graaf, “Cryptographic distinguishability measures for quantum-mechanical states,” IEEE Trans. Inf. Theory 45, 1216–1227 (1999).
  16. M. Fannes, “A continuity property of the entropy density for spin lattice systems,” Commun. Math. Phys. 21, 291–294 (1973).
  17. K. M. R. Audenaert, “A sharp continuity estimate for the von neumann entropy,” J. Phys. A: Math. Theor. 40, 8127–8136 (2007).
  18. R. T. Rockafeller, Convex Analysis (Princeton University Press, 1970).
  19. I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems (Cambridge Univ. Press, 2nd ed. 2011).

Summary

We haven't generated a summary for this paper yet.