Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affective Game Computing: A Survey (2309.14104v1)

Published 25 Sep 2023 in cs.HC, cs.LG, and cs.MM

Abstract: This paper surveys the current state of the art in affective computing principles, methods and tools as applied to games. We review this emerging field, namely affective game computing, through the lens of the four core phases of the affective loop: game affect elicitation, game affect sensing, game affect detection and game affect adaptation. In addition, we provide a taxonomy of terms, methods and approaches used across the four phases of the affective game loop and situate the field within this taxonomy. We continue with a comprehensive review of available affect data collection methods with regards to gaming interfaces, sensors, annotation protocols, and available corpora. The paper concludes with a discussion on the current limitations of affective game computing and our vision for the most promising future research directions in the field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (249)
  1. J. Clement, “Number of gamers worldwide from 2015 to 2024,” May 2022. [Online]. Available: https://www.statista.com/statistics/748044/number-video-gamers-world/
  2. R. Picard, “Affective computing,” MIT Media Laboratory Perceptual Computing, Tech. Rep., 1995.
  3. K. Höök, “Affective loop experiences–what are they?” in Proceedings of the International Conference on Persuasive Technology.   Springer, 2008, pp. 1–12.
  4. D. Melhart, D. Gravina, and G. N. Yannakakis, “Moment-to-moment engagement prediction through the eyes of the observer: Pubg streaming on twitch,” in Proceedings of the International Conference on the Foundations of Digital Games (FDG), 2020, pp. 1–10.
  5. A. Liapis, G. N. Yannakakis, and J. Togelius, “Computational game creativity,” in Proceedings of the fifth International Conference on Computational Creativity, 2014.
  6. A. Liapis, G. N. Yannakakis, M. J. Nelson, M. Preuss, and R. Bidarra, “Orchestrating game generation,” IEEE Transactions on Games, vol. 11, no. 1, pp. 48–68, 2018.
  7. P. Sundström, “Exploring the affective loop,” Ph.D. dissertation, Stockholm University, 2005.
  8. G. N. Yannakakis and A. Paiva, “Emotion in games,” Handbook on affective computing, vol. 2014, pp. 459–471, 2014.
  9. R. Robinson, K. Wiley, A. Rezaeivahdati, M. Klarkowski, and R. L. Mandryk, ““let’s get physiological, physiological” a systematic review of affective gaming,” in Proceedings of the Annual Symposium on Computer-Human Interaction in Play, 2020, pp. 132–147.
  10. D. Navarro, V. Sundstedt, and V. Garro, “Biofeedback methods in entertainment video games: A review of physiological interaction techniques,” Proceedings of the ACM on Human-Computer Interaction (CHI Play), vol. 5, pp. 1–32, 2021.
  11. A. Reetz, D. Valtchanov, M. Barnett-Cowan, M. Hancock, and J. R. Wallace, “Nature vs. stress: Investigating the use of biophilia in non-violent exploration games to reduce stress,” Proceedings of the ACM on Human-Computer Interaction, vol. 5, no. CHI PLAY, pp. 1–13, 2021.
  12. A. Canossa, A. Azadvar, and E. K. Andersen, “Hold my hand: Impact of intimate controllers on player experience,” in Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2020, pp. 261–266.
  13. S. Graja, P. Lopes, and G. Chanel, “Impact of visual and sound orchestration on physiological arousal and tension in a horror game,” IEEE Transactions on Games, vol. 13, no. 3, pp. 287–299, 2020.
  14. N. Ravaja, G. Bente, J. Kätsyri, M. Salminen, and T. Takala, “Virtual character facial expressions influence human brain and facial emg activity in a decision-making game,” IEEE Transactions on Affective Computing, vol. 9, no. 2, pp. 285–298, 2016.
  15. P. Lopes, A. Liapis, and G. N. Yannakakis, “Modelling affect for horror soundscapes,” IEEE Transactions on Affective Computing, vol. 10, no. 2, pp. 209–222, 2017.
  16. S. Ogawa, K. Fujiwara, and M. Kano, “Auditory feedback of false heart rate for video game experience improvement,” IEEE Transactions on Affective Computing, 2020.
  17. M. Colombo, A. Dolhasz, J. Hockman, and C. Harvey, “Psychometric mapping of audio features to perceived physical characteristics of virtual objects,” in 2021 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2021, pp. 1–4.
  18. F. Born, L. Graf, and M. Masuch, “Exergaming: The impact of virtual reality on cognitive performance and player experience,” in 2021 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2021, pp. 1–8.
  19. S. W. McQuiggan, S. Lee, and J. C. Lester, “Early prediction of student frustration,” in Proceedings of International Conference on Affective Computing and Intelligent Interaction.   Springer, 2007, pp. 698–709.
  20. C. Conati and H. Maclaren, “Modeling user affect from causes and effects,” User Modeling, Adaptation, and Personalization, pp. 4–15, 2009.
  21. C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling Player Experience for Content Creation,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 2, no. 1, pp. 54–67, 2010.
  22. H. P. Martínez and G. N. Yannakakis, “Mining multimodal sequential patterns: a case study on affect detection,” in Proceedings of the ACM Conference on Multimodal Interfaces, 2011.
  23. N. Shaker, J. Togelius, and G. N. Yannakakis, “Towards Automatic Personalized Content Generation for Platform Games,” in Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE).   AAAI Press, October 2010.
  24. J. Robison, S. McQuiggan, and J. Lester, “Evaluating the consequences of affective feedback in intelligent tutoring systems,” in Proceedings of International Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2009.
  25. R. L. Hazlett, “Measuring emotional valence during interactive experiences: boys at video game play,” in Proceedings of SIGCHI Conference on Human Factors in Computing Systems (CHI).   ACM, 2006, pp. 1023–1026.
  26. N. Ravaja, T. Saari, M. Salminen, J. Laarni, and K. Kallinen, “Phasic emotional reactions to video game events: A psychophysiological investigation,” Media Psychology, vol. 8, no. 4, pp. 343–367, 2006.
  27. S. W. McQuiggan, B. W. Mott, and J. C. Lester, “Modeling self-efficacy in intelligent tutoring systems: An inductive approach,” User Modeling and User-Adapted Interaction, vol. 18, no. 1, pp. 81–123, 2008.
  28. H. P. Martínez and G. N. Yannakakis, “Genetic search feature selection for affective modeling: a case study on reported preferences,” in Proceedings of the International Workshop on Affective Interaction in Natural Environments.   ACM, 2010, pp. 15–20.
  29. E. Camilleri, G. N. Yannakakis, and A. Liapis, “Towards general models of player affect,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2017, pp. 333–339.
  30. D. Melhart, A. Liapis, and G. N. Yannakakis, “The arousal video game annotation (again) dataset,” IEEE Transactions on Affective Computing, pp. 1–14, 2022.
  31. K. Makantasis, A. Liapis, and G. N. Yannakakis, “From pixels to affect: a study on games and player experience,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2019, pp. 1–7.
  32. ——, “The pixels and sounds of emotion: General-purpose representations of arousal in games,” IEEE Transactions on Affective Computing, 2021.
  33. K. Makantasis, D. Melhart, A. Liapis, and G. N. Yannakakis, “Privileged information for modeling affect in the wild,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2021, pp. 1–8.
  34. C. Holmgård, G. N. Yannakakis, H. P. Martínez, K.-I. Karstoft, and H. S. Andersen, “Multimodal PTSD characterization via the Startlemart game,” Journal on Multimodal User Interfaces, vol. 9, no. 1, pp. 3–15, 2015.
  35. C. Holmgård, G. N. Y. Héctor P. Martínez, and K.-I. Karstoft, “To Rank or to Classify? Annotating Stress for Reliable PTSD Profiling,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2015.
  36. C. Holmgård, G. N. Yannakakis, K.-I. Karstoft, and H. S. Andersen, “Stress detection for PTSD via the Startlemart game,” in Affective Computing and Intelligent Interaction (ACII), 2013 Humaine Association Conference on.   IEEE, 2013, pp. 523–528.
  37. C. Conati, A. Gertner, and K. VanLehn, “Using Bayesian networks to manage uncertainty in student modeling,” User Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 371–417, 2002.
  38. J. Gratch and S. Marsella, “Evaluating a computational model of emotion,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 1, pp. 23–43, 2005.
  39. A. Drachen and M. Schubert, “Spatial game analytics,” in Game Analytics.   Springer, 2013, pp. 365–402.
  40. C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Personas versus clones for player decision modeling,” in Proceedings of the International Conference on Entertainment Computing.   Springer, 2014, pp. 159–166.
  41. T. D. Parsons, T. McMahan, and I. Parberry, “Classification of video game player experience using consumer-grade electroencephalography,” IEEE Transactions on Affective Computing, 2020.
  42. G. Du, W. Zhou, C. Li, D. Li, and P. X. Liu, “An emotion recognition method for game evaluation based on electroencephalogram,” IEEE Transactions on Affective Computing, 2020.
  43. F. Škola and F. Liarokapis, “Bcimanager: A library for development of brain-computer interfacing applications in unity,” in 2021 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2021, pp. 1–4.
  44. S. Sugiyanto, I. K. E. Purnama, E. M. Yuniarno, H. Haryanto, N. Rokhman, and M. H. Purnomo, “Acquiface interface as a device for acquisition of user’s facial expressions in game expression hunter,” in Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2020, pp. 291–296.
  45. S. Greipl, K. Bernecker, and M. Ninaus, “Facial and bodily expressions of emotional engagement: How dynamic measures reflect the use of game elements and subjective experience of emotions and effort,” Proceedings of the ACM on Human-Computer Interaction, vol. 5, no. CHI PLAY, pp. 1–25, 2021.
  46. R. Calvo, I. Brown, and S. Scheding, “Effect of experimental factors on the recognition of affective mental states through physiological measures,” in AI 2009: Advances in Artificial Intelligence.   Springer, 2009, pp. 62–70.
  47. G. N. Yannakakis, H. P. Martínez, and M. Garbarino, “Psychophysiology in games,” in Emotion in Games: Theory and Praxis.   Springer, 2016, pp. 119–137.
  48. J. T. Cacioppo, G. G. Berntson, J. T. Larsen, K. M. Poehlmann, and T. A. Ito, “The psychophysiology of emotion,” Handbook of emotions, vol. 2, pp. 173–191, 2000.
  49. N. Sharma and T. Gedeon, “Objective measures, sensors and computational techniques for stress recognition and classification: A survey,” Computer methods and programs in biomedicine, vol. 108, no. 3, pp. 1287–1301, 2012.
  50. T. J. W. Tijs, D. Brokken, and W. A. Ijsselsteijn, “Dynamic game balancing by recognizing affect,” in Proceedings of International Conference on Fun and Games.   Springer, 2008, pp. 88–93.
  51. L. Nacke and C. A. Lindley, “Flow and immersion in first-person shooters: measuring the player’s gameplay experience,” in Proceedings of the Conference on Future Play: Research, Play, Share.   ACM, 2008, pp. 81–88.
  52. R. L. Mandryk, K. M. Inkpen, and T. W. Calvert, “Using psychophysiological techniques to measure user experience with entertainment technologies,” Behaviour & Information Technology, vol. 25, no. 2, pp. 141–158, 2006.
  53. R. L. Mandryk and M. S. Atkins, “A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies,” International Journal of Human-Computer Studies, vol. 65, no. 4, pp. 329–347, 2007.
  54. P. Rani, N. Sarkar, and C. Liu, “Maintaining optimal challenge in computer games through real-time physiological feedback,” in Proceedings of the International Conference on Human Computer Interaction, 2005, pp. 184–192.
  55. S. Tognetti, M. Garbarino, A. Bonarini, and M. Matteucci, “Modeling enjoyment preference from physiological responses in a car racing game,” in IEEE Symposium on Computational Intelligence and Games (CIG).   IEEE, 2010, pp. 321–328.
  56. A. Drachen, L. Nacke, G. N. Yannakakis, and A. L. Pedersen, “Correlation between heart rate, electrodermal activity and player experience in first-person shooter games,” in Proceedings of the SIGGRAPH Symposium on Video Games.   ACM-SIGGRAPH Publishers, 2010.
  57. G. N. Yannakakis, H. P. Martínez, and A. Jhala, “Towards affective camera control in games,” User Modeling and User-Adapted Interaction, vol. 20, no. 4, pp. 313–340, 2010.
  58. S. E. Zaib and M. Yamamura, “Using heart rate and machine learning for vr horror game personalization,” in 2022 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2022, pp. 213–220.
  59. C. Holmgård, G. N. Yannakakis, H. P. Martínez, and K.-I. Karstoft, “To rank or to classify? Annotating stress for reliable PTSD profiling,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2015, pp. 719–725.
  60. A. Nijholt, “BCI for games: A “state of the art” survey,” in Entertainment Computing-ICEC 2008.   Springer, 2009, pp. 225–228.
  61. G. Rebolledo-Mendez, I. Dunwell, E. Martínez-Mirón, M. D. Vargas-Cerdán, S. De Freitas, F. Liarokapis, and A. R. García-Gaona, “Assessing Neurosky’s usability to detect attention levels in an assessment exercise,” Human-Computer Interaction. New Trends, pp. 149–158, 2009.
  62. O. Alzoubi, R. A. Calvo, and R. H. Stevens, “Classification of EEG for Affect Recognition: An Adaptive Approach,” in AI 2009: Advances in Artificial Intelligence.   Springer, 2009, pp. 52–61.
  63. S. Asteriadis, P. Tzouveli, K. Karpouzis, and S. Kollias, “Estimation of behavioral user state based on eye gaze and head pose—application in an e-learning environment,” Multimedia Tools and Applications, vol. 41, no. 3, pp. 469–493, 2009.
  64. J. Munoz, G. N. Yannakakis, F. Mulvey, D. W. Hansen, G. Gutierrez, and A. Sanchis, “Towards gaze-controlled platform games,” in Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG).   IEEE, 2011, pp. 47–54.
  65. A. Kapoor, W. Burleson, and R. W. Picard, “Automatic prediction of frustration,” International Journal of Human-Computer Studies, vol. 65, no. 8, pp. 724–736, 2007.
  66. I. Arroyo, D. G. Cooper, W. Burleson, B. P. Woolf, K. Muldner, and R. Christopherson, “Emotion sensors go to school,” in Proceedings of Conference on Artificial Intelligence in Education (AIED).   IOS Press, 2009, pp. 17–24.
  67. J. F. Grafsgaard, K. E. Boyer, and J. C. Lester, “Predicting facial indicators of confusion with hidden Markov models,” in Proceedings of International Conference on Affective Computing and Intelligent Interaction (ACII).   Springer, 2011, pp. 97–106.
  68. C. Busso, Z. Deng, S. Yildirim, M. Bulut, C. M. Lee, A. Kazemzadeh, S. Lee, U. Neumann, and S. Narayanan, “Analysis of emotion recognition using facial expressions, speech and multimodal information,” in Proceedings of the International Conference on Multimodal Interfaces (ICMI).   ACM, 2004, pp. 205–211.
  69. Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey of affect recognition methods: Audio, visual, and spontaneous expressions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 1, pp. 39–58, 2009.
  70. J. Dennerlein, T. Becker, P. Johnson, C. Reynolds, and R. W. Picard, “Frustrating computer users increases exposure to physical factors,” in Proceedings of the International Ergonomics Association (IEA), 2003.
  71. W. van den Hoogen, W. A. IJsselsteijn, and Y. de Kort, “Exploring behavioral expressions of player experience in digital games,” in Proceedings of the Workshop on Facial and Bodily Expression for Control and Adaptation of Games (ECAG), 2008, pp. 11–19.
  72. S. D’Mello and A. Graesser, “Automatic detection of learner’s affect from gross body language,” Applied Artificial Intelligence, vol. 23, no. 2, pp. 123–150, 2009.
  73. N. Bianchi-Berthouze and C. L. Lisetti, “Modeling multimodal expression of user’s affective subjective experience,” User Modeling and User-Adapted Interaction, vol. 12, no. 1, pp. 49–84, 2002.
  74. M. Orozco, J. Silva, A. El Saddik, and E. Petriu, “The role of haptics in games,” in Haptics Rendering and Applications.   InTech, 2012.
  75. J. Höysniemi, P. Hämäläinen, L. Turkki, and T. Rouvi, “Children’s intuitive gestures in vision-based action games,” Communications of the ACM, vol. 48, no. 1, pp. 44–50, 2005.
  76. T. Vogt and E. André, “Comparing feature sets for acted and spontaneous speech in view of automatic emotion recognition,” in Proceedings of IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2005, pp. 474–477.
  77. T. Kannetis and A. Potamianos, “Towards adapting fantasy, curiosity and challenge in multimodal dialogue systems for preschoolers,” in Proceedings of International Conference on Multimodal Interfaces (ICMI).   ACM, 2009, pp. 39–46.
  78. T. Johnstone and K. R. Scherer, “Vocal communication of emotion,” in Handbook of emotions.   Guilford Press, New York, 2000, pp. 220–235.
  79. R. Banse and K. R. Scherer, “Acoustic profiles in vocal emotion expression,” Journal of Personality and Social Psychology, vol. 70, no. 3, p. 614, 1996.
  80. B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations and Trends in Information Retrieval, vol. 2, no. 1–2, pp. 1–135, 2008.
  81. M. Cook, S. Colton, and A. Pease, “Aesthetic Considerations for Automated Platformer Design,” in Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2012.
  82. M. T. Llano, M. Cook, C. Guckelsberger, S. Colton, and R. Hepworth, “Towards the automatic generation of fictional ideas for games,” in Experimental AI in Games (EXAG’14), a Workshop collocated with the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE’14). AAAI Publications, 2014.
  83. A. Lobel, M. Gotsis, E. Reynolds, M. Annetta, R. C. Engels, and I. Granic, “Designing and utilizing biofeedback games for emotion regulation: The case of nevermind,” in Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 2016, pp. 1945–1951.
  84. D. Melhart, A. Liapis, and G. N. Yannakakis, “The Affect Game AnnotatIoN (AGAIN) dataset,” arXiv preprint arXiv:2104.02643, 2021.
  85. F. Tencé, C. Buche, P. De Loor, and O. Marc, “The challenge of believability in video games: Definitions, agents models and imitation learning,” arXiv preprint arXiv:1009.0451, 2010.
  86. N. Lambert, L. Castricato, L. von Werra, and A. Havrilla, “Illustrating reinforcement learning from human feedback (rlhf),” Hugging Face Blog, 2022, https://huggingface.co/blog/rlhf.
  87. L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences,” Minds and Machines, vol. 30, no. 4, pp. 681–694, 2020.
  88. OpenAI, “GPT-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
  89. A. Azadvar and A. Canossa, “Upeq: ubisoft perceived experience questionnaire: a self-determination evaluation tool for video games,” in Proceedings of the International Conference on the Foundations of Digital Games (FDG).   ACM, 2018.
  90. D. Melhart, A. Azadvar, A. Canossa, A. Liapis, and G. N. Yannakakis, “Your gameplay says it all: Modelling motivation in Tom Clancy’s The Division,” in Proceedings of the Proceedings of the IEEE Conference on Games (CoG), 2019.
  91. G. N. Yannakakis, R. Cowie, and C. Busso, “The ordinal nature of emotions: An emerging approach,” IEEE Transactions on Affective Computing, 2018.
  92. ——, “The ordinal nature of emotions,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2017, pp. 248–255.
  93. S. Ovadia, “Ratings and rankings: Reconsidering the structure of values and their measurement,” International Journal of Social Research Methodology, vol. 7, no. 5, pp. 403–414, 2004.
  94. A. Metallinou and S. Narayanan, “Annotation and processing of continuous emotional attributes: Challenges and opportunities,” in Proceedings of the Proceedings of the IEEE Conference and workshops on automatic face and gesture recognition, 2013.
  95. G. B. Langley and H. Sheppeard, “The visual analogue scale: its use in pain measurement,” Rheumatology International, vol. 5, no. 4, pp. 145–148, 1985.
  96. G. N. Yannakakis and H. P. Martínez, “Ratings are overrated!” Frontiers in ICT, vol. 2, p. 13, 2015.
  97. G. N. Yannakakis and J. Hallam, “Rating vs. preference: A comparative study of self-reporting,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   Springer, 2011, pp. 437–446.
  98. R. S. J. d. Baker, G. R. Moore, A. Z. Wagner, J. Kalka, A. Salvi, M. Karabinos, C. A. Ashe, and D. Yaron, “The Dynamics between Student Affect and Behavior Occurring Outside of Educational Software,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   Springer, 2011, pp. 14–24.
  99. A. Kleinsmith and N. Bianchi-Berthouze, “Form as a cue in the automatic recognition of non-acted affective body expressions,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   Springer, 2011, pp. 155–164.
  100. D. Giakoumis, D. Tzovaras, K. Moustakas, and G. Hassapis, “Automatic recognition of boredom in video games using novel biosignal moment-based features,” IEEE Transactions on Affective Computing, vol. 2, no. 3, pp. 119–133, 2011.
  101. X. Chen, L. Niu, A. Veeraraghavan, and A. Sabharwal, “Faceengage: robust estimation of gameplay engagement from user-contributed (youtube) videos,” IEEE Transactions on Affective Computing, 2019.
  102. H. P. Martínez, G. N. Yannakakis, and J. Hallam, “Don’t Classify Ratings of Affect; Rank them!” IEEE Transactions on Affective Computing, vol. 5, no. 3, pp. 314–326, 2014.
  103. N. Shaker, G. Yannakakis, and J. Togelius, “Towards automatic personalized content generation for platform games,” in Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 5, 2010.
  104. D. Melhart, A. Liapis, and G. N. Yannakakis, “PAGAN: Video affect annotation made easy,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2019.
  105. W. Chu and Z. Ghahramani, “Preference learning with Gaussian processes,” in Proceedings of the International Conference on Machine learning (ICML).   ACM, 2005, pp. 137–144.
  106. H. P. Martínez, Y. Bengio, and G. N. Yannakakis, “Learning deep physiological models of affect,” IEEE Computational Intelligence Magazine, vol. 9, no. 1, pp. 20–33, 2013.
  107. C. J. Burges, “From ranknet to lambdarank to lambdamart: An overview,” Learning, vol. 11, no. 23-581, p. 81, 2010.
  108. H. Zacharatos, C. Gatzoulis, P. Charalambous, and Y. Chrysanthou, “Emotion recognition from 3d motion capture data using deep cnns,” in 2021 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2021, pp. 1–5.
  109. K. Makantasis, “Affranknet+: ranking affect using privileged information,” in 2021 International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW).   IEEE, 2021, pp. 1–8.
  110. K. Pinitas, K. Makantasis, A. Liapis, and G. N. Yannakakis, “Rankneat: Outperforming stochastic gradient search in preference learning tasks,” arXiv preprint arXiv:2204.06901, 2022.
  111. T. Joachims, “Text categorization with support vector machines: Learning with many relevant features,” Machine Learning: ECML-98, pp. 137–142, 1998.
  112. E. Camilleri, G. N. Yannakakis, D. Melhart, and A. Liapis, “PyPLT: Python preference learning toolbox,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2019.
  113. B. Tastan and G. R. Sukthankar, “Learning policies for first person shooter games using inverse reinforcement learning,” in Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE), 2011.
  114. B. Aytemiz, M. Jacob, and S. Devlin, “Acting with style: Towards designer centred reinforcement learning for the videogames industry,” in Reinforcement Learning for Humans, Computers and Interaction Workshop at CHI, 2022.
  115. C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Generative agents for player decision modeling in games,” in FDG, 2014.
  116. M. Barthet, A. Liapis, and G. N. Yannakakis, “Go-blend behavior and affect,” in 2021 International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW).   IEEE, 2021, pp. 1–8.
  117. M. Barthet, A. Khalifa, A. Liapis, and G. N. Yannakakis, “Generative personas that behave and experience like humans,” in Proceedings of the Conference on the Foundations of Digital Games (FDG).   ACM, 2022.
  118. C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Evolving personas for player decision modeling,” in Proceedings of the Conference on Computational Intelligence and Games (CIG), 2014.
  119. T.-H. D. Nguyen, S. Subramanian, M. S. El-Nasr, and A. Canossa, “Strategy Detection in Wuzzit: A Decision Theoretic Approach,” in Proceedings of the International Conference on Learning Science—Workshop on Learning Analytics for Learning and Becoming a Practice, 2014.
  120. M. Barthet, A. Khalifa, A. Liapis, and G. N. Yannakakis, “Play with emotion: Affect-driven reinforcement learning,” in Proceedings of the International Conference on Affective Computing and Intelligence Interaction (ACII), 2022.
  121. A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First return, then explore,” Nature, vol. 590, no. 7847, pp. 580–586, 2021.
  122. G. N. Yannakakis and J. Togelius, “Experience-driven procedural content generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3, pp. 147–161, 2011.
  123. P. E. Hutchings and J. McCormack, “Adaptive music composition for games,” IEEE Transactions on Games, vol. 12, no. 3, pp. 270–280, 2019.
  124. B. I. Hougaard, I. G. Rossau, J. J. Czapla, M. A. Miko, R. B. Skammelsen, H. Knoche, and M. Jochumsen, “Who willed it? decreasing frustration by manipulating perceived control through fabricated input for stroke rehabilitation bci games,” in Proceedings of the Annual Symposium on Computer-Human Interaction in Play, vol. 235, 2021, pp. 1–235.
  125. A. Paiva, G. Andersson, K. Hook, D. M. M. Costa, and C. Martinho, “SenToy in FantasyA: Designing an Affective Sympathetic Interface to a Computer Game,” Personal and Ubiquitous Computing, vol. 15, no. 4, pp. 378–389, 2002.
  126. R. Aylett, S. Louchart, J. Dias, A. Paiva, and M. Vala, “FearNot!–an experiment in emergent narrative,” in Intelligent Virtual Agents.   Springer, 2005, pp. 305–316.
  127. M. P. Eladhari and M. Sellers, “Good moods: outlook, affect and mood in dynemotion and the mind module,” in Proceedings of the Conference on Future Play: Research, Play, Share.   ACM, 2008, pp. 1–8.
  128. J. Gratch and S. Marsella, “A domain-independent framework for modeling emotion,” Cognitive Systems Research, vol. 5, no. 4, pp. 269–306, 2004.
  129. T. Doce, J. Dias, R. Prada, and A. Paiva, “Creating individual agents through personality traits,” in Proceedings of the International Conference on Intelligent Virtual Agents.   Springer, 2010, pp. 257–264.
  130. K. Perlin, “An image synthesizer,” ACM SIGGRAPH Computer Graphics, vol. 19, no. 3, pp. 287–296, 1985.
  131. M. Habermann, L. Liu, W. Xu, M. Zollhoefer, G. Pons-Moll, and C. Theobalt, “Real-time deep dynamic characters,” ACM Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–16, 2021.
  132. J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based procedural content generation: A taxonomy and survey,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 3, no. 3, pp. 172–186, 2011.
  133. J. Liu, S. Snodgrass, A. Khalifa, S. Risi, G. N. Yannakakis, and J. Togelius, “Deep learning for procedural content generation,” Neural Computing and Applications, vol. 33, no. 1, pp. 19–37, 2021.
  134. G. N. Yannakakis and J. Togelius, “Experience-driven procedural content generation,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2015, pp. 519–525.
  135. J. Togelius and J. Schmidhuber, “An experiment in automatic game design,” in Computational Intelligence and Games, 2008. CIG’08. IEEE Symposium On.   IEEE, 2008, pp. 111–118.
  136. D. B. Or, M. Kolomenkin, and G. Shabat, “Dl-dda-deep learning based dynamic difficulty adjustment with ux and gameplay constraints,” in 2021 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2021, pp. 1–7.
  137. E. Xylakis, A. Liapis, and G. N. Yannakakis, “Architectural form and affect: A spatiotemporal study of arousal,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2021, pp. 1–8.
  138. J. Togelius, M. Preuss, and G. N. Yannakakis, “Towards multiobjective procedural map generation,” in Proceedings of the Workshop on Procedural Content Generation in Games.   ACM, 2010.
  139. N. Shaker, G. N. Yannakakis, and J. Togelius, “Crowdsourcing the aesthetics of platform games,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 5, no. 3, pp. 276–290, 2013.
  140. J. Togelius and S. M. Lucas, “Evolving robust and specialized car racing skills,” in Proceedings of the IEEE Congress on Evolutionary Computation, 2006.
  141. A. Alvarez and J. Font, “Tropetwist: Trope-based narrative structure generation,” arXiv preprint arXiv:2204.09672, 2022.
  142. P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma, “Difficulty scaling of game AI,” in Proceedings of the International Conference on Intelligent Games and Simulation (GAME-ON 2004), 2004, pp. 33–37.
  143. G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Extending reinforcement learning to provide dynamic game balancing,” in Proceedings of the Workshop on Reasoning, Representation, and Learning in Computer Games, International Joint Conference on Artificial Intelligence (IJCAI), August 2005, pp. 7–12.
  144. M. Ambinder, “Biofeedback in gameplay: How Valve measures physiology to enhance gaming experience,” in Game Developers Conference, San Francisco, California, US, 2011.
  145. T. Shu, J. Liu, and G. N. Yannakakis, “Experience-driven pcg via reinforcement learning: A super mario bros study,” in 2021 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2021, pp. 1–9.
  146. Z. Wang, J. Liu, and G. N. Yannakakis, “The fun facets of mario: Multifaceted experience-driven pcg via reinforcement learning,” in Proceedings of the Conference on the Foundations of Digital Games (FDG), 2022.
  147. F. Pallavicini, A. Ferrari, A. Pepe, G. Garcea, A. Zanacchi, and F. Mantovani, “Effectiveness of virtual reality survival horror games for the emotional elicitation: Preliminary insights using resident evil 7: Biohazard,” in Proceedings of the International Conference on Universal Access in Human-Computer Interaction.   Springer, 2018, pp. 87–101.
  148. D. Pisalski, M. Hierhager, C. Stein, M. Zaudig, and C. Bichlmeier, “Influencing the affective state and attention restoration in vr-supported psychotherapy,” in Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2020, pp. 646–649.
  149. R. Somarathna, T. Bednarz, and G. Mohammadi, “Virtual reality for emotion elicitation–a review,” IEEE Transactions on Affective Computing, 2022.
  150. F. Pallavicini, A. Pepe, and M. E. Minissi, “Gaming in virtual reality: What changes in terms of usability, emotional response and sense of presence compared to non-immersive video games?” Simulation & Gaming, vol. 50, no. 2, pp. 136–159, 2019.
  151. C. Lara-Alvarez, H. Mitre-Hernandez, J. J. Flores, and H. Pérez-Espinosa, “Induction of emotional states in educational video games through a fuzzy control system,” IEEE Transactions on Affective Computing, vol. 12, no. 1, pp. 66–77, 2018.
  152. M. A. Zafar, B. Ahmed, R. Al Rihawi, and R. Gutierrez-Osuna, “Gaming away stress: Using biofeedback games to learn paced breathing,” IEEE Transactions on Affective Computing, vol. 11, no. 3, pp. 519–531, 2018.
  153. S. Abramov, A. Korotin, A. Somov, E. Burnaev, A. Stepanov, D. Nikolaev, and M. A. Titova, “Analysis of video game players’ emotions and team performance: An esports tournament case study,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 8, pp. 3597–3606, 2021.
  154. G. N. Yannakakis and H. P. Martinez, “Grounding truth via ordinal annotation,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2015, pp. 574–580.
  155. D. Melhart, A. Liapis, and G. N. Yannakakis, “Towards general models of player experience: A study within genres,” in 2021 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2021, pp. 01–08.
  156. A. Parnandi and R. Gutierrez-Osuna, “Visual biofeedback and game adaptation in relaxation skill transfer,” IEEE Transactions on Affective Computing, vol. 10, no. 2, pp. 276–289, 2017.
  157. E. S. de Lima, B. M. Silva, and G. T. Galam, “Adaptive virtual reality horror games based on machine learning and player modeling,” Entertainment Computing, vol. 43, p. 100515, 2022.
  158. C. Pacheco, L. Tokarchuk, and D. Pérez-Liébana, “Studying believability assessment in racing games,” in Proceedings of the international Conference on the foundations of digital games (FDG), 2018, pp. 1–10.
  159. C. Even, A.-G. Bosser, and C. Buche, “Analysis of the protocols used to assess virtual players in multi-player computer games,” in Proceedings of the International Work-Conference on Artificial Neural Networks.   Springer, 2017, pp. 657–668.
  160. T. Xue, A. E. Ali, T. Zhang, G. Ding, and P. Cesar, “Rcea-360vr: Real-time, continuous emotion annotation in 360° vr videos for collecting precise viewport-dependent ground truth labels,” in Proceedings of the CHI Conference on Human Factors in Computing Systems, 2021, pp. 1–15. [Online]. Available: https://doi.org/10.1145/3411764.3445487
  161. R. Sifa, F. Hadiji, J. Runge, A. Drachen, K. Kersting, and C. Bauckhage, “Predicting purchase decisions in mobile free-to-play games,” in Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 11, no. 1, 2015, pp. 79–85.
  162. G. N. Yannakakis and J. Hallam, “Entertainment modeling through physiology in physical play,” International Journal of Human-Computer Studies, vol. 66, no. 10, pp. 741–755, 2008.
  163. M. S. Hussain, S. K. D’Mello, and R. A. Calvo, “Research and development tools in affective computing,” in The oxford handbook of affective computing.   Oxford Univ. Press, 2014, p. 349.
  164. D. McDuff, A. Mahmoud, M. Mavadati, M. Amr, J. Turcot, and R. e. Kaliouby, “Affdex sdk: a cross-platform real-time multi-face expression recognition toolkit,” in Proceedings of the CHI conference extended abstracts on human factors in computing systems, 2016, pp. 3723–3726.
  165. T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency, “Openface 2.0: Facial behavior analysis toolkit,” in IEEE international conference on automatic face & gesture recognition (FG).   IEEE, 2018, pp. 59–66.
  166. S. Roohi, J. Takatalo, J. M. Kivikangas, and P. Hämäläinen, “Neural network based facial expression analysis of gameevents: a cautionary tale,” in Proceedings of the Annual Symposium on Computer-Human Interaction in Play, 2018, pp. 429–437.
  167. N. Shaker, S. Asteriadis, G. N. Yannakakis, and K. Karpouzis, “Fusing visual and behavioral cues for modeling user experience in games,” IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1519–1531, 2013.
  168. R. Cowie, E. Douglas-Cowie, S. Savvidou*, E. McMahon, M. Sawey, and M. Schröder, “’feeltrace’: An instrument for recording perceived emotion in real time,” in ISCA tutorial and research workshop (ITRW) on speech and emotion, 2000.
  169. M. Kipp, “Anvil-a generic annotation tool for multimodal dialogue,” in Seventh European Conference on Speech Communication and Technology, 2001.
  170. P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and H. Sloetjes, “Elan: a professional framework for multimodality research,” in 5th International Conference on Language Resources and Evaluation (LREC 2006), 2006, pp. 1556–1559.
  171. F. Nagel, R. Kopiez, O. Grewe, and E. Altenmüller, “Emujoy: Software for continuous measurement of perceived emotions in music,” Behavior Research Methods, vol. 39, no. 2, pp. 283–290, 2007.
  172. J. Broekens and W.-P. Brinkman, “Affectbutton: A method for reliable and valid affective self-report,” International Journal of Human-Computer Studies, vol. 71, no. 6, pp. 641–667, 2013.
  173. F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, “Introducing the recola multimodal corpus of remote collaborative and affective interactions,” in 2013 IEEE international conference and workshops on automatic face and gesture recognition (FG).   IEEE, 2013, pp. 1–8.
  174. R. Cowie, M. Sawey, C. Doherty, J. Jaimovich, C. Fyans, and P. Stapleton, “Gtrace: General trace program compatible with EmotionML,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2013, pp. 709–710.
  175. J. M. Girard, “Carma: Software for continuous affect rating and media annotation,” Journal of Open Research Software, vol. 2, no. 1, 2014.
  176. P. Lopes, G. N. Yannakakis, and A. Liapis, “Ranktrace: Relative and unbounded affect annotation,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2017, pp. 158–163.
  177. J. M. Girard and A. G. Wright, “Darma: Software for dual axis rating and media annotation,” Behavior research methods, vol. 50, no. 3, pp. 902–909, 2018.
  178. A. Heimerl, T. Baur, F. Lingenfelser, J. Wagner, and E. André, “Nova-a tool for explainable cooperative machine learning,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2019, pp. 109–115.
  179. T. Zhang, A. El Ali, C. Wang, A. Hanjalic, and P. Cesar, “Rcea: Real-time, continuous emotion annotation for collecting precise mobile video ground truth labels,” in Proceedings of the CHI Conference on Human Factors in Computing Systems, 2020, pp. 1–15.
  180. J. A. Russell, “A circumplex model of affect.” Journal of personality and social psychology, vol. 39, no. 6, p. 1161, 1980.
  181. Y. Baveye, E. Dellandréa, C. Chamaret, and L. Chen, “Deep learning vs. kernel methods: Performance for emotion prediction in videos,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2015, pp. 77–83.
  182. P. M. Müller, S. Amin, P. Verma, M. Andriluka, and A. Bulling, “Emotion recognition from embedded bodily expressions and speech during dyadic interactions,” in Proceedings of Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2015, pp. 663–669.
  183. E. Dellandréa, L. Chen, Y. Baveye, M. V. Sjöberg, C. Chamaret et al., “The mediaeval 2016 emotional impact of movies task,” in Proceedings of CEUR Workshop, 2016.
  184. S. Dhamija and T. E. Boult, “Automated action units vs. expert raters: Face off,” in Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), 2018, pp. 259–268.
  185. S. Erk, M. Kiefer, J. Grothe, A. P. Wunderlich, M. Spitzer, and H. Walter, “Emotional context modulates subsequent memory effect,” Neuroimage, vol. 18, no. 2, pp. 439–447, 2003.
  186. P. Lovei, I. Nazarchuk, S. Aslam, B. Yu, C. Megens, and N. Sidorova, “Designing micro-intelligences for situated affective computing,” in Proceedings of the Workshops on Computer-Human Interaction in IoT Applications (CHIIoT), 2021.
  187. G. F. D. Salvador, P. J. Bota, V. Vinayagamoorthy, H. Plácido da Silva, and A. Fred, “Smartphone-based content annotation for ground truth collection in affective computing,” in Proceedings of the ACM International Conference on Interactive Media Experiences, 2021, pp. 199–204.
  188. K. Karpouzis, G. N. Yannakakis, N. Shaker, and S. Asteriadis, “The platformer experience dataset,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2015, pp. 712–718.
  189. N. Beaudoin-Gagnon, A. Fortin-Côté, C. Chamberland, L. Lefebvre, J. Bergeron-Boucher, A. Campeau-Lecours, S. Tremblay, and P. L. Jackson, “The FUNii database: A physiological, behavioral, demographic and subjective video game database for affective gaming and player experience research,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII), 2019.
  190. S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras, “DEAP: A database for emotion analysis using physiological signals,” IEEE Transactions on Affective Computing, vol. 3, no. 1, pp. 18–31, 2012.
  191. S. Zafeiriou, D. Kollias, M. A. Nicolaou, A. Papaioannou, G. Zhao, and I. Kotsia, “Aff-wild: Valence and arousal ‘in-the-wild’ challenge,” in Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 34–41.
  192. A. Mollahosseini, B. Hasani, and M. H. Mahoor, “AffectNet: A database for facial expression, valence, and arousal computing in the wild,” IEEE Transactions on Affective Computing, vol. 10, no. 1, pp. 18–31, 2017.
  193. F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, “Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions,” in Proceedings of the Proceedings of the IEEE Conference and workshops on automatic face and gesture recognition, 2013.
  194. J. Kossaifi, R. Walecki, Y. Panagakis, J. Shen, M. Schmitt, F. Ringeval, J. Han, V. Pandit, A. Toisoul, B. W. Schuller et al., “SEWA DB: A rich database for audio-visual emotion and sentiment research in the wild,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
  195. L. Maman, E. Ceccaldi, N. Lehmann-Willenbrock, L. Likforman-Sulem, M. Chetouani, G. Volpe, and G. Varni, “GAME-ON: a multimodal dataset for cohesion and group analysis,” IEEE Access, vol. 8, pp. 124 185–124 203, 2020.
  196. M. Doyran, A. Schimmel, P. Baki, K. Ergin, B. Türkmen, A. A. Salah, S. C. Bakkes, H. Kaya, R. Poppe, and A. A. Salah, “MUMBAI: multi-person, multimodal board game affect and interaction analysis dataset,” Journal on Multimodal User Interfaces, vol. 15, no. 4, 2021.
  197. Y. Baveye, E. Dellandrea, C. Chamaret, and L. Chen, “LIRIS-ACCEDE: a video database for affective content analysis,” IEEE Transactions on Affective Computing, vol. 6, no. 1, pp. 43–55, 2015.
  198. D. A. Salter, A. Tamrakar, B. Siddiquie, M. R. Amer, A. Divakaran, B. Lande, and D. Mehri, “The tower game dataset: A multimodal dataset for analyzing social interaction predicates,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   IEEE, 2015, pp. 656–662.
  199. W. Li, F. Abtahi, C. Tsangouri, and Z. Zhu, “Towards an “in-the-wild” emotion dataset using a game-based framework,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).   IEEE, 2016, pp. 1526–1534.
  200. A. Juliani, A. Khalifa, V.-P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi, J. Togelius, and D. Lange, “Obstacle tower: a generalization challenge in vision, control, and planning,” in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2019, pp. 2684–2691.
  201. H. Ahmadi, S. Z. Tootaghaj, S. Mowlaei, M. R. Hashemi, and S. Shirmohammadi, “Gset somi: a game-specific eye tracking dataset for somi,” in Proceedings of the International Conference on Multimedia Systems, 2016, pp. 1–6.
  202. M. Granato, D. Gadia, D. Maggiorini, and L. A. Ripamonti, “An empirical study of players’ emotions in vr racing games based on a dataset of physiological data,” Multimedia Tools and Applications, vol. 79, no. 45, pp. 33 657–33 686, 2020.
  203. A. Smerdov, B. Zhou, P. Lukowicz, and A. Somov, “Collection and validation of psychophysiological data from professional and amateur players: a multimodal esports dataset,” arXiv preprint arXiv:2011.00958, 2020.
  204. R. Zhang, C. Walshe, Z. Liu, L. Guan, K. Muller, J. Whritner, L. Zhang, M. Hayhoe, and D. Ballard, “Atari-head: Atari human eye-tracking and demonstration dataset,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, 2020, pp. 6811–6820.
  205. K. Kutt, D. Drazyk, L. Zuchowska, M. Szelazek, S. Bobek, and G. J. Nalepa, “Biraffe2, a multimodal dataset for emotion-based personalization in rich affective game environments,” Scientific Data, vol. 9, no. 1, pp. 1–15, 2022.
  206. D. Melhart, “Towards a comprehensive model of mediating frustration in videogames,” Game Studies, vol. 18, no. 1, 2018.
  207. J. J. Bryson and P. P. Kime, “Just an artifact: Why machines are perceived as moral agents,” in Proceedings of the International joint conference on artificial intelligence (IJCAI), 2011.
  208. H. Yu, Z. Shen, C. Miao, C. Leung, V. R. Lesser, and Q. Yang, “Building ethics into artificial intelligence,” arXiv preprint arXiv:1812.02953, 2018.
  209. A. Häuselmann, “Fit for purpose? affective computing meets eu data protection law,” International Data Privacy Law, 2021.
  210. N. Bostrom and E. Yudkowsky, “The ethics of artificial intelligence,” The Cambridge handbook of artificial intelligence, vol. 1, pp. 316–334, 2014.
  211. B. Mikkelsen, C. Holmgard, and J. Togelius, “Ethical considerations for player modeling,” in Proceedings of the AAAI Conference on Artificial Intelligence.   AI Access Foundation, 2017, pp. 975–982.
  212. V. Vakkuri, K.-K. Kemell, J. Kultanen, M. Siponen, and P. Abrahamsson, “Ethically aligned design of autonomous systems: Industry viewpoint and an empirical study,” arXiv preprint arXiv:1906.07946, 2019.
  213. D. Melhart, J. Togelius, B. Mikkelsen, C. Holmgård, and G. N. Yannakakis, “The Ethics of AI in Games,” IEEE Transactions on Affective Computing, 2023.
  214. S. Wachter and B. Mittelstadt, “A right to reasonable inferences: re-thinking data protection law in the age of big data and ai,” Columbia Business Law Review, p. 494, 2019.
  215. P. Voigt and A. Von dem Bussche, “The eu general data protection regulation (gdpr),” A Practical Guide, Ed., Cham: Springer International Publishing, vol. 10, no. 3152676, pp. 10–5555, 2017.
  216. P. Jost and M. Lampert, “Two years after: A scoping review of gdpr effects on serious games research ethics reporting,” in Proceedings of the International Conference on Games and Learning Alliance.   Springer, 2020, pp. 372–385.
  217. C. Siegmann and M. Anderljung, “The brussels effect and artificial intelligence: How eu regulation will impact the global ai market,” arXiv preprint arXiv:2208.12645, 2022.
  218. A. Das and P. Rad, “Opportunities and challenges in explainable artificial intelligence (xai): A survey,” arXiv preprint arXiv:2006.11371, 2020.
  219. J. Zhu and M. S. El-Nasr, “Open player modeling: Empowering players through data transparency,” arXiv preprint arXiv:2110.05810, 2021.
  220. F. Ishowo-Oloko, J.-F. Bonnefon, Z. Soroye, J. Crandall, I. Rahwan, and T. Rahwan, “Behavioural evidence for a transparency–efficiency tradeoff in human–machine cooperation,” Nature Machine Intelligence, vol. 1, no. 11, pp. 517–521, 2019.
  221. M. Rovatsos, “We may not cooperate with friendly machines,” Nature Machine Intelligence, vol. 1, no. 11, pp. 497–498, 2019.
  222. R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of foundation models,” arXiv preprint arXiv:2108.07258, 2021.
  223. A. Yapo and J. Weiss, “Ethical implications of bias in machine learning,” in Proceedings of the Hawaii International Conference on System Sciences, 2018.
  224. T. Gebru, “Race and gender,” The Oxford handbook of ethics of AI, pp. 251–269, 2020.
  225. T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. D. Iii, and K. Crawford, “Datasheets for datasets,” Communications of the ACM, vol. 64, no. 12, pp. 86–92, 2021.
  226. J. Crowley, A. OrSullivan, A. Nowak, C. Jonker, D. Pedreschi, F. Giannotti, and Y. Rogers, “Toward ai systems that augment and empower humans by understanding us, our society and the world around us,” Report of 761758 EU Project HumaneAI, pp. 1–32, 2019.
  227. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems, “Ethically aligned design: A vision for prioritizing human well-being with autonomous and intelligent systems,” 2019. [Online]. Available: https://standards.ieee.org/industry-connections/ec/autonomous-systems
  228. S. Thiebes, S. Lins, and A. Sunyaev, “Trustworthy artificial intelligence,” Electronic Markets, vol. 31, no. 2, pp. 447–464, 2021.
  229. N. A. Smuha, “The eu approach to ethics guidelines for trustworthy artificial intelligence,” Computer Law Review International, vol. 20, no. 4, pp. 97–106, 2019.
  230. N. Sidorakis, G. A. Koulieris, and K. Mania, “Binocular eye-tracking for the control of a 3D immersive multimedia user interface,” in IEEE Workshop on Everyday Virtual Reality (WEVR).   IEEE, 2015, pp. 15–18.
  231. T. Kannetis, A. Potamianos, and G. N. Yannakakis, “Fantasy, curiosity and challenge as adaptation indicators in multimodal dialogue systems for preschoolers,” in Proceedings of the Workshop on Child, Computer and Interaction.   ACM, 2009.
  232. S. Yildirim, S. Narayanan, and A. Potamianos, “Detecting emotional state of a child in a conversational computer game,” Computer Speech & Language, vol. 25, no. 1, pp. 29–44, 2011.
  233. A. R. Damasio, B. J. Everitt, and D. Bishop, “The somatic marker hypothesis and the possible functions of the prefrontal cortex [and discussion],” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 351, no. 1346, pp. 1413–1420, 1996.
  234. J. D. Mayer and P. Salovey, “The intelligence of emotional intelligence,” Intelligence, vol. 17, no. 4, pp. 433–442, 1993.
  235. N. Shaker, S. Asteriadis, G. N. Yannakakis, and K. Karpouzis, “A game-based corpus for analysing the interplay between game context and player experience,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   Springer, 2011, pp. 547–556.
  236. H. P. Martínez and G. N. Yannakakis, “Deep multimodal fusion: Combining discrete events and continuous signals,” in Proceedings of the Conference on Multimodal Interaction.   ACM, 2014, pp. 34–41.
  237. G. N. Yannakakis and J. Hallam, “A generic approach for obtaining higher entertainment in predator/prey computer games,” Journal of Game Development, vol. 1, no. 3, pp. 23–50, December 2005.
  238. ——, “A Generic Approach for Generating Interesting Interactive Pac-Man Opponents,” in Proceedings of the IEEE Symposium on Computational Intelligence and Games, 2005.
  239. H. P. Martínez, M. Garbarino, and G. N. Yannakakis, “Generic physiological features as predictors of player experience,” in Proceedings of the Conference on Affective Computing and Intelligent Interaction (ACII).   Springer, 2011, pp. 267–276.
  240. N. Shaker, M. Shaker, and M. Abou-Zleikha, “Towards generic models of player experience,” in Proceedings of the Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2015.
  241. K. Makantasis, K. Pinitas, A. Liapis, and G. N. Yannakakis, “The invariant ground truth of affect,” International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), 2022.
  242. P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive representation learning: A framework and review,” IEEE Access, vol. 8, pp. 193 907–193 934, 2020.
  243. C. Trivedi, A. Liapis, and G. N. Yannakakis, “Contrastive learning of generalized game representations,” in 2021 Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2021, pp. 1–8.
  244. C. Trivedi, K. Makantasis, A. Liapis, and G. N. Yannakakis, “Learning task-independent game state representations from unlabeled images,” arXiv preprint arXiv:2206.06490, 2022.
  245. X. Shen, X. Liu, X. Hu, D. Zhang, and S. Song, “Contrastive learning of subject-invariant eeg representations for cross-subject emotion recognition,” IEEE Transactions on Affective Computing, 2022.
  246. K. Pinitas, K. Makantasis, A. Liapis, and G. N. Yannakakis, “Supervised contrastive learning for affect modelling,” in Proceedings of the International Conference on Multimodal Interaction (ICMI), 2022.
  247. R. Gallotta, M. Zammit, K. Sfikas, D. Baumik, C. Trivedi, A. Khalifa, A. Liapis, and G. N. Yannakakis, “Text-To-Game: Game Engines Powered by Large Language Models,” in Proceedings of the IEEE Conference on Games (CoG).   IEEE, 2023, pp. 1–4.
  248. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.
  249. T. Galanos, A. Liapis, and G. N. Yannakakis, “Affectgan: Affect-based generative art driven by semantics,” in 2021 9th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW).   IEEE, 2021, pp. 01–07.
Citations (10)

Summary

We haven't generated a summary for this paper yet.