Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Rotar central limit theorem for sums of a random number of independent random variables (2309.13988v1)

Published 25 Sep 2023 in math.PR

Abstract: The Rotar central limit theorem is a remarkable theorem in the non-classical version since it does not use the condition of asymptotic infinitesimality for the independent individual summands, unlike the theorems named Lindeberg's and Lindeberg-Feller's in the classical version. The Rotar central limit theorem generalizes the classical Lindeberg-Feller central limit theorem since the Rotar condition is weaker than Lindeberg's. The main aim of this paper is to introduce the Rotar central limit theorem for sums of a random number of independent (not necessarily identically distributed) random variables and the conditions for its validity. The order of approximation in this theorem is also considered in this paper.

Summary

We haven't generated a summary for this paper yet.