Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Audio classification with Dilated Convolution with Learnable Spacings (2309.13972v2)

Published 25 Sep 2023 in cs.SD, cs.AI, and eess.AS

Abstract: Dilated convolution with learnable spacings (DCLS) is a recent convolution method in which the positions of the kernel elements are learned throughout training by backpropagation. Its interest has recently been demonstrated in computer vision (ImageNet classification and downstream tasks). Here we show that DCLS is also useful for audio tagging using the AudioSet classification benchmark. We took two state-of-the-art convolutional architectures using depthwise separable convolutions (DSC), ConvNeXt and ConvFormer, and a hybrid one using attention in addition, FastViT, and drop-in replaced all the DSC layers by DCLS ones. This significantly improved the mean average precision (mAP) with the three architectures without increasing the number of parameters and with only a low cost on the throughput. The method code is based on PyTorch and is available at https://github.com/K-H-Ismail/DCLS-Audio

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com