Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniqueness of distributional solutions to the 2D vorticity Navier-Stokes equation and its associated nonlinear Markov process (2309.13910v1)

Published 25 Sep 2023 in math.PR

Abstract: In this work we prove uniqueness of distributional solutions to $2D$ Navier-Stokes equations in vorticity form $u_t-\nu\Delta u+ div (K(u)u)=0$ on $(0,\infty)\times\mathbb{R}2$ with Radon measures as initial data, where $K$ is the Biot-Savart operator in 2-D. As a consequence, one gets the uniqueness of probabilistically weak solutions to the corresponding McKean-Vlasov stochastic differential equations. It is also proved that for initial conditions with density in $L4$ these solutions are strong, so can be written as a functional of the Wiener process, and that pathwise uniqueness holds in the class of weak solutions, whose time marginal law densities are in $L{\frac43}$ in space-time. In particular, one derives a stochastic representation of the vorticity $u$ of the fluid flow in terms of a solution to the McKean-Vlasov SDE. Finally, it is proved that the family $\mathbb{P}_{s,\zeta},$ $s \geq 0$, $\zeta=$probability measure on $\mathbb{R}d$, of path laws of the solutions to the McKean-Vlasov SDE, started with $\zeta$ at $s$, form a nonlinear Markov process in the sense of McKean.

Summary

We haven't generated a summary for this paper yet.