Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subspace-Guided Feature Reconstruction for Unsupervised Anomaly Localization (2309.13904v2)

Published 25 Sep 2023 in cs.CV

Abstract: Unsupervised anomaly localization, which plays a critical role in industrial manufacturing, aims to identify anomalous regions that deviate from normal sample patterns. Most recent methods perform feature matching or reconstruction for the target sample with pre-trained deep neural networks. However, they still struggle to address challenging anomalies because the deep embeddings stored in the memory bank can be less powerful and informative. More specifically, prior methods often overly rely on the finite resources stored in the memory bank, which leads to low robustness to unseen targets. In this paper, we propose a novel subspace-guided feature reconstruction framework to pursue adaptive feature approximation for anomaly localization. It first learns to construct low-dimensional subspaces from the given nominal samples, and then learns to reconstruct the given deep target embedding by linearly combining the subspace basis vectors using the self-expressive model. Our core is that, despite the limited resources in the memory bank, the out-of-bank features can be alternatively ``mimicked'' under the self-expressive mechanism to adaptively model the target. Eventually, the poorly reconstructed feature dimensions indicate anomalies for localization. Moreover, we propose a sampling method that leverages the sparsity of subspaces and allows the feature reconstruction to depend only on a small resource subset, which contributes to less memory overhead. Extensive experiments on three industrial benchmark datasets demonstrate that our approach generally achieves state-of-the-art anomaly localization performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9592–9600.
  2. P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger, “Beyond dents and scratches: Logical constraints in unsupervised anomaly detection and localization,” International Journal of Computer Vision, vol. 130, no. 4, pp. 947–969, 2022.
  3. Y. Zou, J. Jeong, L. Pemula, D. Zhang, and O. Dabeer, “Spot-the-difference self-supervised pre-training for anomaly detection and segmentation,” in European Conference on Computer Vision.   Springer, 2022, pp. 392–408.
  4. W. Li, V. Mahadevan, and N. Vasconcelos, “Anomaly detection and localization in crowded scenes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 1, pp. 18–32, 2013.
  5. W. Liu, W. Luo, D. Lian, and S. Gao, “Future frame prediction for anomaly detection–a new baseline,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 6536–6545.
  6. X. Wu, G. Mao, and S. Xing, “Unsupervised anomaly detection in images using attentional normalizing flows,” Engineering Applications of Artificial Intelligence, vol. 127, p. 107369, 2024.
  7. H. Deng and X. Li, “Anomaly detection via reverse distillation from one-class embedding,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9737–9746.
  8. Z. Liu, Y. Zhou, Y. Xu, and Z. Wang, “Simplenet: A simple network for image anomaly detection and localization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 20 402–20 411.
  9. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
  10. N. Cohen and Y. Hoshen, “Sub-image anomaly detection with deep pyramid correspondences,” CoRR, vol. abs/2005.02357, 2020.
  11. K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, and P. Gehler, “Towards total recall in industrial anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14 318–14 328.
  12. Y. Sun, H. Wang, Y. Hu, H. Jiang, and B. Yin, “Mbmf: Constructing memory banks of multi-scale features for anomaly detection,” IET Computer Vision, 2023.
  13. S. Lee, S. Lee, and B. C. Song, “Cfa: Coupled-hypersphere-based feature adaptation for target-oriented anomaly localization,” IEEE Access, vol. 10, pp. 78 446–78 454, 2022.
  14. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data,” Applications of Data Mining in Computer Security, pp. 77–101, 2002.
  15. P. K. Agarwal, S. Har-Peled, K. R. Varadarajan et al., “Geometric approximation via coresets,” Combinatorial and Computational Geometry, vol. 52, no. 1, pp. 1–30, 2005.
  16. P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, “Improving unsupervised defect segmentation by applying structural similarity to autoencoders,” CoRR, vol. abs/1807.02011, 2018.
  17. J. Yang, Y. Shi, and Z. Qi, “Dfr: Deep feature reconstruction for unsupervised anomaly segmentation,” CoRR, vol. abs/2012.07122, 2020.
  18. K. Hotta, H. Xie, and C. Zhang, “Component-based nearest neighbour subspace clustering,” IET Image Processing, vol. 16, no. 10, pp. 2697–2708, 2022.
  19. K. Hotta, T. Akashi, S. Tokai, and C. Zhang, “Pmssc: Parallelizable multi-subset based self-expressive model for subspace clustering,” Computational Visual Media, vol. 9, no. 3, pp. 479–494, 2023.
  20. E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.
  21. D. L. Donoho, “For most large underdetermined systems of linear equations the minimal ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-norm solution is also the sparsest solution,” Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 59, no. 6, pp. 797–829, 2006.
  22. R. de Paula Monteiro, M. C. Lozada, D. R. C. Mendieta, R. V. S. Loja, and C. J. A. Bastos Filho, “A hybrid prototype selection-based deep learning approach for anomaly detection in industrial machines,” Expert Systems with Applications, vol. 204, p. 117528, 2022.
  23. L. Bergman, N. Cohen, and Y. Hoshen, “Deep nearest neighbor anomaly detection,” CoRR, vol. abs/2002.10445, 2020.
  24. M. Rudolph, T. Wehrbein, B. Rosenhahn, and B. Wandt, “Fully convolutional cross-scale-flows for image-based defect detection,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 1088–1097.
  25. S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised anomaly detection via adversarial training,” in Proceedings of the Asian Conference on Computer Vision.   Springer, 2019, pp. 622–637.
  26. S. Akçay, A. Atapour-Abarghouei, and T. P. Breckon, “Skip-ganomaly: Skip connected and adversarially trained encoder-decoder anomaly detection,” in 2019 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2019, pp. 1–8.
  27. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proceedings of the International Conference on Learning Representations, 2014.
  28. P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4183–4192.
  29. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” CoRR, vol. abs/1503.02531, 2015.
  30. G. Wang, S. Han, E. Ding, and D. Huang, “Student-teacher feature pyramid matching for anomaly detection,” in Proceedings of the British Machine Vision Conference, 2021.
  31. V. Zavrtanik, M. Kristan, and D. Skočaj, “Dsr–a dual subspace re-projection network for surface anomaly detection,” in European Conference on Computer Vision.   Springer, 2022, pp. 539–554.
  32. T. Defard, A. Setkov, A. Loesch, and R. Audigier, “Padim: a patch distribution modeling framework for anomaly detection and localization,” in International Conference on Pattern Recognition.   Springer, 2021, pp. 475–489.
  33. P. C. Mahalanobis, “On the generalized distance in statistics,” Sankhyā: The Indian Journal of Statistics, Series A (2008-), vol. 80, pp. S1–S7, 2018.
  34. R. Vidal, “Subspace clustering,” IEEE Signal Processing Magazine, vol. 28, no. 2, pp. 52–68, 2011.
  35. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  36. C. You and R. Vidal, “Geometric conditions for subspace-sparse recovery,” in International Conference on Machine Learning, 2015, pp. 1585–1593.
  37. C. You, D. Robinson, and R. Vidal, “Scalable sparse subspace clustering by orthogonal matching pursuit,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016, pp. 3918–3927.
  38. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition,” in Proceedings of Asilomar Conference on Signals, Systems and Computers, 1993, pp. 40–44.
  39. J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.
  40. M. A. Davenport and M. B. Wakin, “Analysis of orthogonal matching pursuit using the restricted isometry property,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4395–4401, 2010.
  41. V. Zavrtanik, M. Kristan, and D. Skočaj, “Reconstruction by inpainting for visual anomaly detection,” Pattern Recognition, vol. 112, p. 107706, 2021.
  42. P. Mishra, R. Verk, D. Fornasier, C. Piciarelli, and G. L. Foresti, “Vt-adl: A vision transformer network for image anomaly detection and localization,” in Proceedings of the IEEE 30th International Symposium on Industrial Electronics (ISIE).   IEEE, 2021, pp. 01–06.
  43. J. Yu, Y. Zheng, X. Wang, W. Li, Y. Wu, R. Zhao, and L. Wu, “Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows,” CoRR, vol. abs/2111.07677, 2021.
  44. Y. Huang, C. Qiu, and K. Yuan, “Surface defect saliency of magnetic tile,” The Visual Computer, vol. 36, pp. 85–96, 2020.
  45. S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings of the British Machine Vision Conference, 2016, pp. 87.1–87.12.
  46. M. Rudolph, B. Wandt, and B. Rosenhahn, “Same same but differnet: Semi-supervised defect detection with normalizing flows,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1907–1916.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Katsuya Hotta (4 papers)
  2. Chao Zhang (909 papers)
  3. Yoshihiro Hagihara (1 paper)
  4. Takuya Akashi (7 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.