Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Representation Learning Towards Patents Network Analysis (2309.13888v1)

Published 25 Sep 2023 in cs.SI and cs.LG

Abstract: Patent analysis has recently been recognized as a powerful technique for large companies worldwide to lend them insight into the age of competition among various industries. This technique is considered a shortcut for developing countries since it can significantly accelerate their technology development. Therefore, as an inevitable process, patent analysis can be utilized to monitor rival companies and diverse industries. This research employed a graph representation learning approach to create, analyze, and find similarities in the patent data registered in the Iranian Official Gazette. The patent records were scrapped and wrangled through the Iranian Official Gazette portal. Afterward, the key entities were extracted from the scrapped patents dataset to create the Iranian patents graph from scratch based on novel natural language processing and entity resolution techniques. Finally, thanks to the utilization of novel graph algorithms and text mining methods, we identified new areas of industry and research from Iranian patent data, which can be used extensively to prevent duplicate patents, familiarity with similar and connected inventions, Awareness of legal entities supporting patents and knowledge of researchers and linked stakeholders in a particular research field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mohammad Heydari (14 papers)
  2. Babak Teimourpour (12 papers)
Citations (1)