Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network-PSO-based Velocity Control Algorithm for Landing UAVs on a Boat (2309.13679v2)

Published 24 Sep 2023 in cs.RO

Abstract: Precise landing of Unmanned Aerial Vehicles (UAVs) onto moving platforms like Autonomous Surface Vehicles (ASVs) is both important and challenging, especially in GPS-denied environments, for collaborative navigation of heterogeneous vehicles. UAVs need to land within a confined space onboard ASV to get energy replenishment, while ASV is subject to translational and rotational disturbances due to wind and water flow. Current solutions either rely on high-level waypoint navigation, which struggles to robustly land on varied-speed targets, or necessitate laborious manual tuning of controller parameters, and expensive sensors for target localization. Therefore, we propose an adaptive velocity control algorithm that leverages Particle Swarm Optimization (PSO) and Neural Network (NN) to optimize PID parameters across varying flight altitudes and distinct speeds of a moving boat. The cost function of PSO includes the status change rates of UAV and proximity to the target. The NN further interpolates the PSO-founded PID parameters. The proposed method implemented on a water strider hexacopter design, not only ensures accuracy but also increases robustness. Moreover, this NN-PSO can be readily adapted to suit various mission requirements. Its ability to achieve precise landings extends its applicability to scenarios, including but not limited to rescue missions, package deliveries, and workspace inspections.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza, “Vision-based autonomous quadrotor landing on a moving platform,” in 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR).   IEEE, 2017, pp. 200–207.
  2. H. Du, W. Wang, C. Xu, R. Xiao, and C. Sun, “Real-time onboard 3d state estimation of an unmanned aerial vehicle in multi-environments using multi-sensor data fusion,” Sensors, vol. 20, no. 3, p. 919, 2020.
  3. J. Kim, S. Woo, and J. Kim, “Lidar-guided autonomous landing of an aerial vehicle on a ground vehicle,” in 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).   IEEE, 2017, pp. 228–231.
  4. A. Santamaria-Navarro, R. Thakker, D. D. Fan, B. Morrell, and A.-a. Agha-mohammadi, “Towards resilient autonomous navigation of drones,” in Robotics Research: The 19th International Symposium ISRR.   Springer, 2022, pp. 922–937.
  5. T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.
  6. C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, “Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.
  7. S. Lange, N. Sunderhauf, and P. Protzel, “A vision based onboard approach for landing and position control of an autonomous multirotor uav in gps-denied environments,” in 2009 International Conference on Advanced Robotics, 2009, pp. 1–6.
  8. M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review of visual odometry: types, approaches, challenges, and applications,” SpringerPlus, vol. 5, pp. 1–26, 2016.
  9. O. Bouaiss, R. Mechgoug, and A. Taleb-Ahmed, “Visual soft landing of an autonomous quadrotor on a moving pad using a combined fuzzy velocity control with model predictive control,” Signal, Image and Video Processing, vol. 17, no. 1, pp. 21–30, 2023.
  10. A. Keipour, G. A. Pereira, R. Bonatti, R. Garg, P. Rastogi, G. Dubey, and S. Scherer, “Visual servoing approach to autonomous uav landing on a moving vehicle,” Sensors, vol. 22, no. 17, p. 6549, 2022.
  11. J. Li, H. Xie, K. H. Low, J. Yong, and B. Li, “Image-based visual servoing of rotorcrafts to planar visual targets of arbitrary orientation,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7861–7868, 2021.
  12. Q. Wang, W. Wang, S. Suzuki, A. Namiki, H. Liu, and Z. Li, “Design and implementation of uav velocity controller based on reference model sliding mode control,” Drones, vol. 7, no. 2, 2023. [Online]. Available: https://www.mdpi.com/2504-446X/7/2/130
  13. Y. Feng, C. Zhang, S. Baek, S. Rawashdeh, and A. Mohammadi, “Autonomous landing of a uav on a moving platform using model predictive control,” Drones, vol. 2, no. 4, p. 34, 2018.
  14. R. Bereza, L. Persson, and B. Wahlberg, “Distributed model predictive control for cooperative landing,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 15 180–15 185, 2020, 21st IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896320329505
  15. W. Zhao, H. Liu, and X. Wang, “Robust visual servoing control for quadrotors landing on a moving target,” Journal of the Franklin Institute, vol. 358, no. 4, pp. 2301–2319, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0016003221000223
  16. B. Lee, V. Saj, M. Benedict, and D. M. Kalathil, “A vision-based control method for autonomous landing of vertical flight aircraft on a moving platform without using gps,” ArXiv, vol. abs/2008.05699, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221112511
  17. P. R. Palafox, M. Garzón, J. Valente, J. J. Roldán, and A. Barrientos, “Robust visual-aided autonomous takeoff, tracking, and landing of a small uav on a moving landing platform for life-long operation,” Applied Sciences, vol. 9, no. 13, 2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/13/2661
  18. J. Morales, I. Castelo, R. Serra, P. U. Lima, and M. Basiri, “Vision-based autonomous following of a moving platform and landing for an unmanned aerial vehicle,” Sensors, vol. 23, no. 2, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/2/829
  19. Z. Zhao, P. Han, Y. Xu, W. Xie, W. Zhang, K. Liang, and Q. Zeng, “Vision-based autonomous landing control of a multi-rotor aerial vehicle on a moving platform with experimental validations,” IFAC-PapersOnLine, vol. 55, no. 3, pp. 1–6, 2022, 16th IFAC Symposium on Large Scale Complex Systems: Theory and Applications LSS 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896322002658
  20. A. Gautam, M. Singh, P. B. Sujit, and S. Saripalli, “Autonomous quadcopter landing on a moving target,” Sensors, vol. 22, no. 3, p. 1116, 2022.
  21. G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing control using learned dynamics,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 9784–9790.
  22. T. T. Mac, C. Copot, T. T. Duc, and R. De Keyser, “Ar. drone uav control parameters tuning based on particle swarm optimization algorithm,” in 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR).   IEEE, 2016, pp. 1–6.
  23. A. M. Almeshal and M. R. Alenezi, “A vision-based neural network controller for the autonomous landing of a quadrotor on moving targets,” Robotics, vol. 7, no. 4, 2018. [Online]. Available: https://www.mdpi.com/2218-6581/7/4/71
  24. J. Choi, D. Cheon, and J. Lee, “Robust landing control of a quadcopter on a slanted surface,” International Journal of Precision Engineering and Manufacturing, vol. 22, pp. 1147–1156, 2021.
  25. B. Bingham, C. Aguero, M. McCarrin, J. Klamo, J. Malia, K. Allen, T. Lum, M. Rawson, and R. Waqar, “Toward maritime robotic simulation in gazebo,” in Proceedings of MTS/IEEE OCEANS Conference, Seattle, WA, October 2019.
  26. M. Fiala, “Artag, a fiducial marker system using digital techniques,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2.   IEEE, 2005, pp. 590–596.
  27. S. M. Nogar, “Autonomous landing of a uav on a moving ground vehicle in a gps denied environment,” in 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2020, pp. 77–83.
  28. J. Wubben, F. Fabra, C. T. Calafate, T. Krzeszowski, J. M. Marquez-Barja, J.-C. Cano, and P. Manzoni, “A vision-based system for autonomous vertical landing of unmanned aerial vehicles,” in 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), 2019, pp. 1–7.
Citations (1)

Summary

We haven't generated a summary for this paper yet.