Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anisotropic body compliance facilitates robotic sidewinding in complex environments (2309.13532v1)

Published 24 Sep 2023 in cs.RO

Abstract: Sidewinding, a locomotion strategy characterized by the coordination of lateral and vertical body undulations, is frequently observed in rattlesnakes and has been successfully reconstructed by limbless robotic systems for effective movement across diverse terrestrial terrains. However, the integration of compliant mechanisms into sidewinding limbless robots remains less explored, posing challenges for navigation in complex, rheologically diverse environments. Inspired by a notable control simplification via mechanical intelligence in lateral undulation, which offloads feedback control to passive body mechanics and interactions with the environment, we present an innovative design of a mechanically intelligent limbless robot for sidewinding. This robot features a decentralized bilateral cable actuation system that resembles organismal muscle actuation mechanisms. We develop a feedforward controller that incorporates programmable body compliance into the sidewinding gait template. Our experimental results highlight the emergence of mechanical intelligence when the robot is equipped with an appropriate level of body compliance. This allows the robot to 1) locomote more energetically efficiently, as evidenced by a reduced cost of transport, and 2) navigate through terrain heterogeneities, all achieved in an open-loop manner, without the need for environmental awareness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. W. Mosauer, “Adaptive convergence in the sand reptiles of the sahara and of california: a study in structure and behavior,” Copeia, vol. 1932, no. 2, pp. 72–78, 1932.
  2. J. Gray, “The mechanism of locomotion in snakes,” Journal of experimental biology, vol. 23, no. 2, pp. 101–120, 1946.
  3. C. Brain, “Observations on the locomotion of the south west african adder, bitis perinqueyi (boulenger), with speculations on the origin of sidewinding,” Annals of the Transvaal Museum, vol. 24, no. 1, pp. 19–24, 1960.
  4. C. Gans and H. Mendelssohn, “Sidewinding and jumping progression of vipers,” Toxins of animal and plant origin, pp. 17–38, 1972.
  5. B. C. Jayne, “Kinematics of terrestrial snake locomotion,” Copeia, pp. 915–927, 1986.
  6. J. L. Tingle, “Facultatively sidewinding snakes and the origins of locomotor specialization,” Integrative and Comparative Biology, vol. 60, no. 1, pp. 202–214, 2020.
  7. H. Marvi, C. Gong, N. Gravish, H. Astley, M. Travers, R. L. Hatton, J. R. Mendelson III, H. Choset, D. L. Hu, and D. I. Goldman, “Sidewinding with minimal slip: Snake and robot ascent of sandy slopes,” Science, vol. 346, no. 6206, pp. 224–229, 2014.
  8. H. C. Astley, C. Gong, J. Dai, M. Travers, M. M. Serrano, P. A. Vela, H. Choset, J. R. Mendelson III, D. L. Hu, and D. I. Goldman, “Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion,” Proceedings of the National Academy of Sciences, vol. 112, no. 19, pp. 6200–6205, 2015.
  9. J. W. Burdick, J. Radford, and G. S. Chirikjian, “A’sidewinding’locomotion gait for hyper-redundant robots,” Advanced Robotics, vol. 9, no. 3, pp. 195–216, 1994.
  10. K. Lipkin, I. Brown, A. Peck, H. Choset, J. Rembisz, P. Gianfortoni, and A. Naaktgeboren, “Differentiable and piecewise differentiable gaits for snake robots,” in 2007 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2007, pp. 1864–1869.
  11. R. Ariizumi and F. Matsuno, “Dynamic analysis of three snake robot gaits,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1075–1087, 2017.
  12. F. Rozaidi, E. Waters, O. Dawes, J. Yang, J. R. Davidson, and R. L. Hatton, “Hissbot: Sidewinding with a soft snake robot,” in 2023 IEEE International Conference on Soft Robotics (RoboSoft).   IEEE, 2023, pp. 1–7.
  13. S. Ma, H. Araya, and L. Li, “Development of a creeping snake-robot,” in Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No. 01EX515).   IEEE, 2001, pp. 77–82.
  14. A. Crespi and A. J. Ijspeert, “Online optimization of swimming and crawling in an amphibious snake robot,” IEEE Transactions on robotics, vol. 24, no. 1, pp. 75–87, 2008.
  15. M. M. Serrano, A. H. Chang, G. Zhang, and P. A. Vela, “Incorporating frictional anisotropy in the design of a robotic snake through the exploitation of scales,” in 2015 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2015, pp. 3729–3734.
  16. B. Chong, T. Wang, J. M. Rieser, B. Lin, A. Kaba, G. Blekherman, H. Choset, and D. I. Goldman, “Frequency modulation of body waves to improve performance of sidewinding robots,” The International Journal of Robotics Research, vol. 40, no. 12-14, pp. 1547–1562, 2021.
  17. B. Chong, T. Wang, B. Lin, S. Li, H. Choset, G. Blekherman, and D. Goldman, “Moving sidewinding forward: optimizing contact patterns for limbless robots via geometric mechanics,” in Robotics: science and systems, vol. 17, 2021.
  18. H. C. Astley, J. M. Rieser, A. Kaba, V. M. Paez, I. Tomkinson, J. R. Mendelson, and D. I. Goldman, “Side-impact collision: mechanics of obstacle negotiation in sidewinding snakes,” Bioinspiration & Biomimetics, vol. 15, no. 6, p. 065005, 2020.
  19. L. Xinyu and F. Matsuno, “Control of snake-like robot based on kinematic model with image sensor,” in IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003, vol. 1.   IEEE, 2003, pp. 347–352.
  20. G. Sartoretti, T. Wang, G. Chuang, Q. Li, and H. Choset, “Autonomous decentralized shape-based navigation for snake robots in dense environments,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 9276–9282.
  21. P. Liljebäck, Ø. Stavdahl, K. Y. Pettersen, and J. T. Gravdahl, “Mamba-a waterproof snake robot with tactile sensing,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 294–301.
  22. D. Ramesh, Q. Fu, and C. Li, “Sensnake: A snake robot with contact force sensing for studying locomotion in complex 3-d terrain,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 2068–2075.
  23. M. Travers, J. Whitman, and H. Choset, “Shape-based coordination in locomotion control,” The International Journal of Robotics Research, vol. 37, no. 10, pp. 1253–1268, 2018.
  24. T. Wang, J. Whitman, M. Travers, and H. Choset, “Directional compliance in obstacle-aided navigation for snake robots,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 2458–2463.
  25. M. Sitti, “Physical intelligence as a new paradigm,” Extreme Mechanics Letters, vol. 46, p. 101340, 2021.
  26. Q. Fu and C. Li, “Robotic modelling of snake traversing large, smooth obstacles reveals stability benefits of body compliance,” Royal Society open science, vol. 7, no. 2, p. 191192, 2020.
  27. P. E. Schiebel, M. C. Maisonneuve, K. Diaz, J. M. Rieser, and D. I. Goldman, “Robophysical modeling of bilaterally activated and soft limbless locomotors,” in Biomimetic and Biohybrid Systems: 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings 9.   Springer, 2020, pp. 300–311.
  28. T. Wang, C. Pierce, V. Kojouharov, B. Chong, K. Diaz, H. Lu, and D. I. Goldman, “Mechanical intelligence simplifies control in terrestrial limbless locomotion,” arXiv preprint arXiv:2304.08652, 2023.
  29. S. Hirose and M. Mori, “Biologically inspired snake-like robots,” in 2004 IEEE International Conference on Robotics and Biomimetics.   IEEE, 2004, pp. 1–7.
  30. C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gianfortoni, M. Gonzalez-Rivero, R. Hatton, and H. Choset, “Design of a modular snake robot,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2007, pp. 2609–2614.
  31. A. A. Transeth, R. I. Leine, C. Glocker, K. Y. Pettersen, and P. Liljebäck, “Snake robot obstacle-aided locomotion: Modeling, simulations, and experiments,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 88–104, 2008.
  32. T. Takemori, M. Tanaka, and F. Matsuno, “Adaptive helical rolling of a snake robot to a straight pipe with irregular cross-sectional shape,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 437–451, 2022.
  33. S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712, pp. 1082–1085, 2005.
  34. S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, “Design principles for highly efficient quadrupeds and implementation on the mit cheetah robot,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 3307–3312.
  35. U. Saranli, M. Buehler, and D. E. Koditschek, “Rhex: A simple and highly mobile hexapod robot,” The International Journal of Robotics Research, vol. 20, no. 7, pp. 616–631, 2001.
  36. J. Aguilar, T. Zhang, F. Qian, M. Kingsbury, B. McInroe, N. Mazouchova, C. Li, R. Maladen, C. Gong, M. Travers, et al., “A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems,” Reports on Progress in Physics, vol. 79, no. 11, p. 110001, 2016.
  37. T. Wang, B. Chong, K. Diaz, J. Whitman, H. Lu, M. Travers, D. I. Goldman, and H. Choset, “The omega turn: A biologically-inspired turning strategy for elongated limbless robots,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 7766–7771.
  38. T. Wang, B. Chong, Y. Deng, R. Fu, H. Choset, and D. I. Goldman, “Generalized omega turn gait enables agile limbless robot turning in complex environments,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 01–07.
Citations (4)

Summary

We haven't generated a summary for this paper yet.