Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discwise Active Learning for LiDAR Semantic Segmentation (2309.13276v1)

Published 23 Sep 2023 in cs.CV

Abstract: While LiDAR data acquisition is easy, labeling for semantic segmentation remains highly time consuming and must therefore be done selectively. Active learning (AL) provides a solution that can iteratively and intelligently label a dataset while retaining high performance and a low budget. In this work we explore AL for LiDAR semantic segmentation. As a human expert is a component of the pipeline, a practical framework must consider common labeling techniques such as sequential labeling that drastically improve annotation times. We therefore propose a discwise approach (DiAL), where in each iteration, we query the region a single frame covers on global coordinates, labeling all frames simultaneously. We then tackle the two major challenges that emerge with discwise AL. Firstly we devise a new acquisition function that takes 3D point density changes into consideration which arise due to location changes or ego-vehicle motion. Next we solve a mixed-integer linear program that provides a general solution to the selection of multiple frames while taking into consideration the possibilities of disc intersections. Finally we propose a semi-supervised learning approach to utilize all frames within our dataset and improve performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Vezhnevets, J. M. Buhmann, and V. Ferrari, “Active learning for semantic segmentation with expected change,” in CVPR, 2012.
  2. Y. Siddiqui, J. Valentin, and M. Nießner, “Viewal: Active learning with viewpoint entropy for semantic segmentation,” in CVPR, 2020.
  3. J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “Semantickitti: A dataset for semantic scene understanding of lidar sequences,” in ICCV, 2019.
  4. O. Unal, D. Dai, and L. Van Gool, “Scribble-supervised lidar semantic segmentation,” in CVPR, 2022.
  5. W. K. Fong, R. Mohan, J. V. Hurtado, L. Zhou, H. Caesar, O. Beijbom, and A. Valada, “Panoptic nuscenes: A large-scale benchmark for lidar panoptic segmentation and tracking,” RA-L, 2022.
  6. S. Desai and D. Ghose, “Active learning for improved semi-supervised semantic segmentation in satellite images,” in WACV, January 2022.
  7. I. C. Saidu and L. Csató, “Active learning with bayesian unet for efficient semantic image segmentation,” Journal of Imaging, 2021.
  8. F. Ozdemir, Z. Peng, P. Fuernstahl, C. Tanner, and O. Goksel, “Active learning for segmentation based on bayesian sample queries,” Knowledge-Based Systems, vol. 214, 2021.
  9. Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning with image data,” in ICML, 2017.
  10. A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” arXiv preprint arXiv:1703.01780, 2017.
  11. B. Settles and M. Craven, “An analysis of active learning strategies for sequence labeling tasks,” in EMNLP, 2008.
  12. K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin, “Cost-effective active learning for deep image classification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 12, 2016.
  13. D. Roth and K. Small, “Margin-based active learning for structured output spaces,” in ECML.   Springer, 2006.
  14. A. J. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-class active learning for image classification,” in CVPR, 2009, pp. 2372–2379.
  15. R. Hwa, “Sample selection for statistical parsing,” Computational linguistics, vol. 30, no. 3, 2004.
  16. A. Kirsch, J. Van Amersfoort, and Y. Gal, “Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning,” NIPS, vol. 32, 2019.
  17. T.-H. Wu, Y.-C. Liu, Y.-K. Huang, H.-Y. Lee, H.-T. Su, P.-C. Huang, and W. H. Hsu, “Redal: Region-based and diversity-aware active learning for point cloud semantic segmentation,” in ICCV, 2021.
  18. Z. Hu, X. Bai, R. Zhang, X. Wang, G. Sun, H. Fu, and C.-L. Tai, “Lidal: Inter-frame uncertainty based active learning for 3d lidar semantic segmentation,” in ECCV.   Springer, 2022.
  19. M. Liu, Y. Zhou, C. R. Qi, B. Gong, H. Su, and D. Anguelov, “Less: Label-efficient semantic segmentation for lidar point clouds,” in ECCV.   Springer, 2022, pp. 70–89.
  20. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in CVPR, 2017.
  21. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” arXiv preprint arXiv:1706.02413, 2017.
  22. O. Unal, L. Van Gool, and D. Dai, “Improving point cloud semantic segmentation by learning 3d object detection,” in WACV, 2021.
  23. B. Wu, A. Wan, X. Yue, and K. Keutzer, “Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud,” in ICRA, 2018.
  24. B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud,” in ICRA, 2019.
  25. X. Zhu, H. Zhou, T. Wang, F. Hong, Y. Ma, W. Li, H. Li, and D. Lin, “Cylindrical and asymmetrical 3d convolution networks for lidar segmentation,” arXiv preprint arXiv:2011.10033, 2020.
  26. H. Tang, Z. Liu, S. Zhao, Y. Lin, J. Lin, H. Wang, and S. Han, “Searching efficient 3d architectures with sparse point-voxel convolution,” in ECCV, 2020.
  27. C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets: Minkowski convolutional neural networks,” in CVPR, 2019.
  28. L. Jiang, S. Shi, Z. Tian, X. Lai, S. Liu, C.-W. Fu, and J. Jia, “Guided point contrastive learning for semi-supervised point cloud semantic segmentation,” in ICCV, October 2021.
  29. M. Cheng, L. Hui, J. Xie, and J. Yang, “Sspc-net: Semi-supervised semantic 3d point cloud segmentation network,” arXiv preprint arXiv:2104.07861, 2021.
  30. Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in ICML, 2016.
  31. D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari, “We don’t need no bounding-boxes: Training object class detectors using only human verification,” in CVPR, 2016.
  32. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022. [Online]. Available: https://www.gurobi.com
Citations (4)

Summary

We haven't generated a summary for this paper yet.