Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unitary representations of real groups and localization theory for Hodge modules (2309.13215v3)

Published 22 Sep 2023 in math.RT and math.AG

Abstract: We prove a conjecture of Schmid and the second named author that the unitarity of a representation of a real reductive Lie group with real infinitesimal character can be read off from a canonical filtration, the Hodge filtration. Our proof rests on three main ingredients. The first is a wall crossing theory for mixed Hodge modules: the key result is that, in certain natural families, the Hodge filtration varies semi-continuously with jumps controlled by extension functors. The second ingredient is a Hodge-theoretic refinement of Beilinson-Bernstein localization: we show that the Hodge filtration of a mixed Hodge module on the flag variety satisfies the usual cohomology vanishing and global generation properties enjoyed by the underlying $\mathcal{D}$-module. The third ingredient is an explicit calculation of the Hodge filtration on a tempered Hodge module. As byproducts of our work, we obtain a version of Saito's Kodaira vanishing for twisted mixed Hodge modules, a calculation of the Hodge filtration on a certain object in category $\mathcal{O}$, and a host of new vanishing results for coherent sheaves on flag varieties.

Summary

We haven't generated a summary for this paper yet.