Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Walking-by-Logic: Signal Temporal Logic-Guided Model Predictive Control for Bipedal Locomotion Resilient to External Perturbations (2309.13172v1)

Published 22 Sep 2023 in cs.RO

Abstract: This study proposes a novel planning framework based on a model predictive control formulation that incorporates signal temporal logic (STL) specifications for task completion guarantees and robustness quantification. This marks the first-ever study to apply STL-guided trajectory optimization for bipedal locomotion push recovery, where the robot experiences unexpected disturbances. Existing recovery strategies often struggle with complex task logic reasoning and locomotion robustness evaluation, making them susceptible to failures caused by inappropriate recovery strategies or insufficient robustness. To address this issue, the STL-guided framework generates optimal and safe recovery trajectories that simultaneously satisfy the task specification and maximize the locomotion robustness. Our framework outperforms a state-of-the-art locomotion controller in a high-fidelity dynamic simulation, especially in scenarios involving crossed-leg maneuvers. Furthermore, it demonstrates versatility in tasks such as locomotion on stepping stones, where the robot must select from a set of disjointed footholds to maneuver successfully.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. C. Khazoom and S. Kim, “Humanoid arm motion planning for improved disturbance recovery using model hierarchy predictive control,” in International Conference on Robotics and Automation, 2022, pp. 6607–6613.
  2. Y. Gong and J. W. Grizzle, “One-step ahead prediction of angular momentum about the contact point for control of bipedal locomotion: Validation in a lip-inspired controller,” in IEEE International Conference on Robotics and Automation, 2021, pp. 2832–2838.
  3. C. Khazoom, D. Gonzalez-Diaz, Y. Ding, and S. Kim, “Humanoid self-collision avoidance using whole-body control with control barrier functions,” in IEEE-RAS 21st International Conference on Humanoid Robots, 2022, pp. 558–565.
  4. D. Marew, M. Lvovsky, S. Yu, S. Sessions, and D. Kim, “Riemannian motion policy for robust balance control in dynamic legged locomotion,” 2023.
  5. S. Kulgod, W. Chen, J. Huang, Y. Zhao, and N. Atanasov, “Temporal logic guided locomotion planning and control in cluttered environments,” in American Control Conference, 2020, pp. 5425–5432.
  6. J. Warnke, A. Shamsah, Y. Li, and Y. Zhao, “Towards safe locomotion navigation in partially observable environments with uneven terrain,” in IEEE Conference on Decision and Control, 2020, pp. 958–965.
  7. H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots: Guarantees and feedback for robot behavior,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 211–236, 2018.
  8. V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in 53rd IEEE Conference on Decision and Control, 2014, pp. 81–87.
  9. R. Griffin, J. Foster, S. Fasano, B. Shrewsbury, and S. Bertrand, “Reachability aware capture regions with time adjustment and cross-over for step recovery,” 2023.
  10. R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa, and J. Pratt, “Walking stabilization using step timing and location adjustment on the humanoid robot, atlas,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp. 667–673.
  11. Z. Gu, N. Boyd, and Y. Zhao, “Reactive locomotion decision-making and robust motion planning for real-time perturbation recovery,” in International Conference on Robotics and Automation, 2022, pp. 1896–1902.
  12. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation,” in Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 2001, pp. 239–246 vol.1.
  13. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, “Biped walking pattern generation by using preview control of zero-moment point,” in IEEE International Conference on Robotics and Automation, vol. 2, 2003, pp. 1620–1626.
  14. Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust optimal planning and control of non-periodic bipedal locomotion with a centroidal momentum model,” The International Journal of Robotics Research, vol. 36, no. 11, pp. 1211–1242, 2017.
  15. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds.   Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.
  16. G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42, pp. 4262–4291, 2009.
  17. C. Belta and S. Sadraddini, “Formal methods for control synthesis: An optimization perspective,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, no. 1, pp. 115–140, 2019.
  18. S. Sadraddini and C. Belta, “Robust temporal logic model predictive control,” in 53rd Annual Allerton Conference on Communication, Control, and Computing, 2015, pp. 772–779.
  19. Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of signal temporal logic for symbolic control,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 241–246, 2021.
  20. M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “Walking control based on step timing adaptation,” IEEE Transactions on Robotics, vol. 36, no. 3, pp. 629–643, 2020.
  21. H. Sadeghian, C. Ott, G. Garofalo, and G. Cheng, “Passivity-based control of underactuated biped robots within hybrid zero dynamics approach,” in IEEE International Conference on Robotics and Automation, 2017, pp. 4096–4101.
  22. P. Zaytsev, S. J. Hasaneini, and A. Ruina, “Two steps is enough: No need to plan far ahead for walking balance,” in IEEE International Conference on Robotics and Automation, 2015, pp. 6295–6300.
  23. T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models,” The International Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012.
  24. J. Ding, C. Zhou, Z. Guo, X. Xiao, and N. Tsagarakis, “Versatile reactive bipedal locomotion planning through hierarchical optimization,” in International Conference on Robotics and Automation, 2019, pp. 256–262.
  25. Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control using the smooth robustness of temporal logic,” in IEEE Conference on Control Technology and Applications, 2017, pp. 1235–1240.
Citations (9)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com