Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk-aware Control for Robots with Non-Gaussian Belief Spaces (2309.12857v2)

Published 22 Sep 2023 in cs.RO

Abstract: This paper addresses the problem of safety-critical control of autonomous robots, considering the ubiquitous uncertainties arising from unmodeled dynamics and noisy sensors. To take into account these uncertainties, probabilistic state estimators are often deployed to obtain a belief over possible states. Namely, Particle Filters (PFs) can handle arbitrary non-Gaussian distributions in the robot's state. In this work, we define the belief state and belief dynamics for continuous-discrete PFs and construct safe sets in the underlying belief space. We design a controller that provably keeps the robot's belief state within this safe set. As a result, we ensure that the risk of the unknown robot's state violating a safety specification, such as avoiding a dangerous area, is bounded. We provide an open-source implementation as a ROS2 package and evaluate the solution in simulations and hardware experiments involving high-dimensional belief spaces.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. “Monte carlo localization for mobile robots,” in International Conference on Robotics and Automation (ICRA), vol. 2.   IEEE, 1999, pp. 1322–1328.
  2. L. Blackmore, H. Li, and B. Williams, “A probabilistic approach to optimal robust path planning with obstacles,” in American Control Conference.   IEEE, 2006, pp. 7–pp.
  3. J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty using iterative local optimization in belief space,” The International Journal of Robotics Research, vol. 31, no. 11, pp. 1263–1278, 2012.
  4. H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for mavs in dynamic environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 776–783, 2019.
  5. M. Ono and B. C. Williams, “Iterative risk allocation: A new approach to robust model predictive control with a joint chance constraint,” in Conference on Decision and Control.   IEEE, 2008, pp. 3427–3432.
  6. Y. Zhang, S. Walters, and X. Xu, “Control barrier function meets interval analysis: Safety-critical control with measurement and actuation uncertainties,” in American Control Conference (ACC).   IEEE, 2022.
  7. Y. Wang and X. Xu, “Observer-based control barrier functions for safety critical systems,” in American Control Conference (ACC).   IEEE, 2022, pp. 709–714.
  8. S. Dean, A. Taylor, R. Cosner, B. Recht, and A. Ames, “Guaranteeing safety of learned perception modules via measurement-robust control barrier functions,” in Conference on Robot Learning.   PMLR, 2021, pp. 654–670.
  9. O. de Groot, B. Brito, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-based trajectory optimization in uncertain dynamic environments,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5389–5396, 2021.
  10. O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-based motion planning with bounded probability of collision,” arXiv preprint arXiv:2307.01070, 2023.
  11. T. Nyberg, C. Pek, L. Dal Col, C. Norén, and J. Tumova, “Risk-aware motion planning for autonomous vehicles with safety specifications,” in 2021 IEEE Intelligent Vehicles Symposium (IV), 2021, pp. 1016–1023.
  12. F. S. Barbosa, B. Lacerda, P. Duckworth, J. Tumova, and N. Hawes, “Risk-aware motion planning in partially known environments,” in 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 5220–5226.
  13. A. Majumdar and M. Pavone, “How should a robot assess risk? towards an axiomatic theory of risk in robotics,” in Robotics Research: The 18th International Symposium ISRR.   Springer, 2020, pp. 75–84.
  14. M. Althoff and J. M. Dolan, “Online verification of automated road vehicles using reachability analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 903–918, 2014.
  15. C. Pek, S. Manzinger, M. Koschi, and M. Althoff, “Using online verification to prevent autonomous vehicles from causing accidents,” Nature Machine Intelligence, vol. 2, no. 9, pp. 518–528, 2020.
  16. P. J. Campo and M. Morari, “Robust model predictive control,” in 1987 American control conference.   IEEE, 1987, pp. 1021–1026.
  17. W. Langson, I. Chryssochoos, S. Raković, and D. Q. Mayne, “Robust model predictive control using tubes,” Automatica, vol. 40, no. 1, pp. 125–133, 2004.
  18. P. Roque, W. S. Cortez, L. Lindemann, and D. V. Dimarogonas, “Corridor mpc: Towards optimal and safe trajectory tracking,” in American Control Conference (ACC).   IEEE, 2022, pp. 2025–2032.
  19. M. N. Zeilinger, C. N. Jones, D. M. Raimondo, and M. Morari, “Real-time mpc-stability through robust mpc design,” in Conference on Decision and Control (CDC).   IEEE, 2009, pp. 3980–3986.
  20. X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, 2015.
  21. S. Kolathaya and A. D. Ames, “Input-to-state safety with control barrier functions,” IEEE control systems letters, vol. 3, no. 1, pp. 108–113, 2018.
  22. A. T. Schwarm and M. Nikolaou, “Chance-constrained model predictive control,” AIChE Journal, vol. 45, no. 8, pp. 1743–1752, 1999.
  23. A. Clark, “Control barrier functions for complete and incomplete information stochastic systems,” in American Control Conference (ACC), 2019, pp. 2928–2935.
  24. R. K. Cosner, P. Culbertson, A. J. Taylor, and A. D. Ames, “Robust safety under stochastic uncertainty with discrete-time control barrier functions,” arXiv preprint arXiv:2302.07469, 2023.
  25. M. Black, G. Fainekos, B. Hoxha, D. Prokhorov, and D. Panagou, “Safety under uncertainty: Tight bounds with risk-aware control barrier functions,” arXiv preprint arXiv:2304.01040, 2023.
  26. P. Li, M. Wendt, and G. Wozny, “A probabilistically constrained model predictive controller,” Automatica, vol. 38, no. 7, pp. 1171–1176, 2002.
  27. F. Oldewurtel, C. N. Jones, A. Parisio, and M. Morari, “Stochastic model predictive control for building climate control,” IEEE Transactions on Control Systems Technology, vol. 22, no. 3, pp. 1198–1205, 2013.
  28. A. Singletary, M. Ahmadi, and A. D. Ames, “Safe control for nonlinear systems with stochastic uncertainty via risk control barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 349–354, 2022.
  29. T. Lew, R. Bonalli, and M. Pavone, “Risk-averse trajectory optimization via sample average approximation,” arXiv preprint arXiv:2307.03167, 2023.
  30. M. Vahs, C. Pek, and J. Tumova, “Belief control barrier functions for risk-aware control,” Robotics and Automation Letters, 2023.
  31. C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained learning-based nmpc enabling reliable mobile robot path tracking,” The International Journal of Robotics Research, vol. 35, no. 13, pp. 1547–1563, 2016.
  32. L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A probabilistic particle-control approximation of chance-constrained stochastic predictive control,” IEEE transactions on Robotics, vol. 26, no. 3, pp. 502–517, 2010.
  33. R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Efficient planning in non-gaussian belief spaces and its application to robot grasping,” in Robotics Research.   Springer, 2017, pp. 253–269.
  34. Z. Sunberg and M. Kochenderfer, “Online algorithms for pomdps with continuous state, action, and observation spaces,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 28, 2018, pp. 259–263.
  35. G. Leobacher and M. Szölgyenyi, “A strong order 1/2 method for multidimensional sdes with discontinuous drift,” The Annals of Applied Probability, vol. 27, no. 4, pp. 2383–2418, 2017.
  36. D. Crisan and A. Doucet, “A survey of convergence results on particle filtering methods for practitioners,” IEEE Transactions on Signal Processing, vol. 50, no. 3, pp. 736–746, 2002.
  37. M. K. Nielsen, T. K. Ritschel, I. Christensen, J. Dragheim, J. K. Huusom, K. V. Gernaey, and J. B. Jørgensen, “State estimation for continuous-discrete-time nonlinear stochastic systems,” arXiv preprint arXiv:2212.02139, 2022.
  38. M. Vahs and J. Tumova, “Non-smooth control barrier functions for stochastic dynamical systems,” Accepted at European Control Conference (ECC), 2024.
  39. P. Thomas and E. Learned-Miller, “Concentration inequalities for conditional value at risk,” in International Conference on Machine Learning.   PMLR, 2019, pp. 6225–6233.
  40. J. Huang, Z. Liu, J. Zeng, X. Chi, and H. Su, “Obstacle avoidance for unicycle-modelled mobile robots with time-varying control barrier functions,” 2023.
  41. X. Chen, “A new generalization of chebyshev inequality for random vectors,” arXiv preprint arXiv:0707.0805, 2007.
  42. S. Macenski, F. Martín, R. White, and J. G. Clavero, “The marathon 2: A navigation system,” in International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 2718–2725.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com