Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hausdorff dimension of exceptional sets arising in $θ$-expansions (2309.12662v1)

Published 22 Sep 2023 in math.NT and math.PR

Abstract: For a fixed $\theta2=1/m$, $m \in \mathbb{N}+$, let $x \in [0, \theta)$ and $[a_1(x) \theta, a_2(x) \theta, \ldots]$ be the $\theta$-expansion of $x$. Our first goal is to extend for $\theta$-expansions the results of Jarnik \cite{J-1928} concerning the set of badly aproximable numbers and the set of irrationals whose partial quotients do not exceed a positive integer. Define $ L_n (x)= \displaystyle \max{1 \leq i \leq n} a_i(x), x \in \Omega:=[0, \theta)\setminus \mathbb{Q} $. The second goal is to complete our result inspired by Philipp \cite{Ph-1976} % [ \liminf_{n \to \infty} \frac{L_n(x) \log\log n}{n} = \frac{1}{\log \left( 1+ \theta2\right)} \mbox{ for a.e. } x \in [0, \theta]. ] % In this regard we prove that for any $\eta > 0$ the set [ E(\eta) = \left\lbrace x \in \Omega: \lim_{n \to \infty} \frac{L_n(x) \log\log n}{n} = \eta \right\rbrace ] is of full Hausdorff dimension.

Summary

We haven't generated a summary for this paper yet.