Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images (2309.12245v3)

Published 21 Sep 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Biomedical image datasets can be imbalanced due to the rarity of targeted diseases. Generative Adversarial Networks play a key role in addressing this imbalance by enabling the generation of synthetic images to augment datasets. It is important to generate synthetic images that incorporate a diverse range of features to accurately represent the distribution of features present in the training imagery. Furthermore, the absence of diverse features in synthetic images can degrade the performance of machine learning classifiers. The mode collapse problem impacts Generative Adversarial Networks' capacity to generate diversified images. Mode collapse comes in two varieties: intra-class and inter-class. In this paper, both varieties of the mode collapse problem are investigated, and their subsequent impact on the diversity of synthetic X-ray images is evaluated. This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization with the Deep Convolutional GAN and Auxiliary Classifier GAN to alleviate the mode collapse problems. Synthetically generated images are utilized for data augmentation and training a Vision Transformer model. The classification performance of the model is evaluated using accuracy, recall, and precision scores. Results demonstrate that the DCGAN and the ACGAN with adaptive input-image normalization outperform the DCGAN and ACGAN with un-normalized X-ray images as evidenced by the superior diversity scores and classification scores.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. X. Chen, X. Wang, K. Zhang, K.-M. Fung, T. C. Thai, K. Moore, R. S. Mannel, H. Liu, B. Zheng, and Y. Qiu, “Recent advances and clinical applications of deep learning in medical image analysis,” Medical Image Analysis, p. 102444, 2022.
  2. Jiang, Xiang and Ding, Liqiang and Havaei, Mohammad and Jesson, Andrew and Matwin, Stan, “Task adaptive metric space for medium-shot medical image classification,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2019, pp. 147–155.
  3. N. Hasani, F. Farhadi, M. A. Morris, M. Nikpanah, A. Rahmim, Y. Xu, A. Pariser, M. T. Collins, R. M. Summers, E. Jones et al., “Artificial intelligence in medical imaging and its impact on the rare disease community: threats, challenges and opportunities,” PET clinics, vol. 17, no. 1, pp. 13–29, 2022.
  4. M. Mostapha and M. Styner, “Role of deep learning in infant brain MRI analysis,” Magnetic resonance imaging, vol. 64, pp. 171–189, 2019.
  5. Xue, Yuan and Ye, Jiarong and Zhou, Qianying and Long, L Rodney and Antani, Sameer and Xue, Zhiyun and Cornwell, Carl and Zaino, Richard and Cheng, Keith C and Huang, Xiaolei, “Selective synthetic augmentation with HistoGAN for improved histopathology image classification,” Medical Image Analysis, vol. 67, p. 101816, 2021.
  6. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, ser. NIPS’14.   Cambridge, MA, USA: MIT Press, 2014, p. 2672–2680.
  7. S. Karakanis and G. Leontidis, “Lightweight deep learning models for detecting COVID-19 from chest X-ray images,” Computers in biology and medicine, vol. 130, p. 104181, 2021.
  8. Wickramaratne, Sajila D and Mahmud, Md Shaad, “Conditional-GAN Based Data Augmentation for Deep Learning Task Classifier Improvement Using fNIRS Data,” Frontiers in big Data, vol. 4, 2021.
  9. P. M. Shah, H. Ullah, R. Ullah, D. Shah, Y. Wang, S. u. Islam, A. Gani, and J. J. Rodrigues, “DC-GAN-based synthetic X-ray images augmentation for increasing the performance of EfficientNet for COVID-19 detection,” Expert Systems, vol. 39, no. 3, p. e12823, 2022.
  10. A. A. Al-Shargabi, J. F. Alshobaili, A. Alabdulatif, and N. Alrobah, “COVID-CGAN: Efficient Deep Learning Approach for COVID-19 Detection Based on CXR Images Using Conditional GANs,” Applied Sciences, vol. 11, no. 16, p. 7174, 2021.
  11. Z. Guo, L. Zheng, L. Ye, S. Pan, and T. Yan, “Data Augmentation Using Auxiliary Classifier Generative Adversarial Networks,” in Proceedings of 2021 Chinese Intelligent Systems Conference.   Springer, 2022, pp. 790–800.
  12. X. Ma, Y. Niu, L. Gu, Y. Wang, Y. Zhao, J. Bailey, and F. Lu, “Understanding adversarial attacks on deep learning based medical image analysis systems,” Pattern Recognition, vol. 110, p. 107332, 2021.
  13. I. S. A. Abdelhalim, M. F. Mohamed, and Y. B. Mahdy, “Data augmentation for skin lesion using self-attention based progressive generative adversarial network,” Expert Systems with Applications, vol. 165, p. 113922, 2021.
  14. Z. Wang, Q. She, and T. E. Ward, “Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy,” ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–38, 2021.
  15. A. Torfi, M. Beyki, and E. A. Fox, “On the Evaluation of Generative Adversarial Networks By Discriminative Models,” in 2020 25th International Conference on Pattern Recognition (ICPR).   IEEE, 2021, pp. 991–998.
  16. M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv preprint arXiv:1411.1784, 2014.
  17. Y. Jiang, H. Chen, M. Loew, and H. Ko, “Covid-19 ct image synthesis with a conditional generative adversarial network,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 2, pp. 441–452, 2020.
  18. A. Odena, C. Olah, and J. Shlens, “Conditional Image Synthesis with Auxiliary Classifier GANs,” in International conference on machine learning.   PMLR, 2017, pp. 2642–2651.
  19. Y. Karbhari, A. Basu, Z. W. Geem, G.-T. Han, and R. Sarkar, “Generation of synthetic chest X-ray images and detection of COVID-19: A deep learning based approach,” Diagnostics, vol. 11, no. 5, p. 895, 2021.
  20. M. M. Saad, M. H. Rehmani, and R. O’Reilly, “A self-attention guided multi-scale gradient gan for diversified x-ray image synthesis,” in Artificial Intelligence and Cognitive Science: 30th Irish Conference, AICS 2022, Munster, Ireland, December 8–9, 2022, Revised Selected Papers.   Springer, 2023, pp. 18–31.
  21. P. Huang, X. Liu, and Y. Huang, “Data Augmentation For Medical MR Image Using Generative Adversarial Networks,” arXiv preprint arXiv:2111.14297, 2021.
  22. G. Modanwal, A. Vellal, and M. A. Mazurowski, “Normalization of breast MRIs using cycle-consistent generative adversarial networks,” Computer methods and programs in biomedicine, vol. 208, p. 106225, 2021.
  23. G. Huang and A. H. Jafari, “Enhanced balancing GAN: Minority-class image generation,” Neural Computing and Applications, pp. 1–10, 2021.
  24. L. Xu, X. Zeng, Z. Huang, W. Li, and H. Zhang, “Low-dose chest X-ray image super-resolution using generative adversarial nets with spectral normalization,” Biomedical Signal Processing and Control, vol. 55, p. 101600, 2020.
  25. A. Segato, V. Corbetta, M. Di Marzo, L. Pozzi, and E. De Momi, “Data augmentation of 3D brain environment using Deep Convolutional Refined Auto-Encoding Alpha GAN,” IEEE Transactions on Medical Robotics and Bionics, 2020.
  26. Z. Qin, Z. Liu, P. Zhu, and Y. Xue, “A GAN-based image synthesis method for skin lesion classification,” Computer Methods and Programs in Biomedicine, vol. 195, p. 105568, 2020.
  27. N. K. Singh and K. Raza, “Medical Image Generation Using Generative Adversarial Networks: A Review,” Health Informatics: A Computational Perspective in Healthcare, pp. 77–96, 2021.
  28. S. Kazeminia, C. Baur, A. Kuijper, B. van Ginneken, N. Navab, S. Albarqouni, and A. Mukhopadhyay, “GANs for medical image analysis,” Artificial Intelligence in Medicine, vol. 109, p. 101938, 2020.
  29. M. M. Saad, M. H. Rehmani, and R. O’Reilly, “Addressing the Intra-class Mode Collapse Problem using Adaptive Input Image Normalization in GAN-based X-ray Images,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).   IEEE, 2022, pp. 2049–2052.
  30. J. A. Qadir, S. K. Jameel, and J. Majidpour, “Covid-19 detection and overcome the scarcity of chest X-Ray datasets based on transfer learning and GAN model,” in 2021 International Conference on Communication & Information Technology (ICICT).   IEEE, 2021, pp. 104–109.
  31. Z. Huang, H. Mao, N. Jiang, and X. Wang, “DAPR-Net: Domain Adaptive Predicting-Refinement Network for Retinal Vessel Segmentation,” in Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning.   Springer, 2020, pp. 13–22.
  32. R. Verma, R. Mehrotra, C. Rane, R. Tiwari, and A. K. Agariya, “Synthetic image augmentation with generative adversarial network for enhanced performance in protein classification,” Biomedical Engineering Letters, vol. 10, no. 3, pp. 443–452, 2020.
  33. A. H. Barshooi and A. Amirkhani, “A novel data augmentation based on Gabor filter and convolutional deep learning for improving the classification of COVID-19 chest X-Ray images,” Biomedical Signal Processing and Control, vol. 72, p. 103326, 2022.
  34. B. Z. Hussain, I. Andleeb, M. S. Ansari, A. M. Joshi, and N. Kanwal, “Wasserstein gan based chest x-ray dataset augmentation for deep learning models: Covid-19 detection use-case,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).   IEEE, 2022, pp. 2058–2061.
  35. A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and P. R. Pinheiro, “CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection,” IEEE Access, vol. 8, pp. 91 916–91 923, 2020.
  36. M. A. Zulkifley, S. R. Abdani, and N. H. Zulkifley, “COVID-19 screening using a lightweight convolutional neural network with generative adversarial network data augmentation,” Symmetry, vol. 12, no. 9, p. 1530, 2020.
  37. T. Rahman, A. Khandakar, Y. Qiblawey, A. Tahir, S. Kiranyaz, S. B. A. Kashem, M. T. Islam, S. Al Maadeed, S. M. Zughaier, M. S. Khan et al., “Exploring the effect of image enhancement techniques on covid-19 detection using chest x-ray images,” Computers in biology and medicine, vol. 132, p. 104319, 2021.
  38. K. Zuiderveld, “Contrast limited adaptive histogram equalization,” Graphics gems, pp. 474–485, 1994.
  39. A. Borji, “Pros and cons of GAN evaluation measures,” Computer Vision and Image Understanding, vol. 179, pp. 41–65, 2019.
  40. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2.   IEEE, 2003, pp. 1398–1402.
  41. J. D. Bodapati and V. Rohith, “ChxCapsNet: Deep capsule network with transfer learning for evaluating pneumonia in paediatric chest radiographs,” Measurement, vol. 188, p. 110491, 2022.
  42. Kermany, Daniel S and Goldbaum, Michael and Cai, Wenjia and Valentim, Carolina CS and Liang, Huiying and Baxter, Sally L and McKeown, Alex and Yang, Ge and Wu, Xiaokang and Yan, Fangbing and others, “Identifying medical diagnoses and treatable diseases by image-based deep learning,” Cell, vol. 172, no. 5, pp. 1122–1131, 2018.
  43. K. S. Krishnan and K. S. Krishnan, “Vision transformer based COVID-19 detection using chest X-rays,” in 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC).   IEEE, 2021, pp. 644–648.
  44. A. Manickam, J. Jiang, Y. Zhou, A. Sagar, R. Soundrapandiyan, and R. D. J. Samuel, “Automated pneumonia detection on chest X-ray images: A deep learning approach with different optimizers and transfer learning architectures,” Measurement, vol. 184, p. 109953, 2021.
  45. J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya et al., “Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 590–597.
  46. J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. Q. Duong, and M. Ghassemi, “Covid-19 image data collection: Prospective predictions are the future,” arXiv preprint arXiv:2006.11988, 2020.
  47. COVID-19 Imaging findings. [Accessed on September. 10, 2022]. [Online]. Available: https://radiologyassistant.nl/chest/covid-19/covid19-imaging-findings
  48. T. Miyato and M. Koyama, “cGANs with Projection Discriminator,” in International Conference on Learning Representations, 2018. [Online]. Available: https://openreview.net/forum?id=ByS1VpgRZ
  49. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Muhammad Muneeb Saad (8 papers)
  2. Mubashir Husain Rehmani (40 papers)
  3. Ruairi O'Reilly (12 papers)
Citations (1)